
Introduction

1.1 What is Control?

When we use the word control in everyday life, we are referring to the act of producing a
desired result. By this broad definition, control is seen to cover all artificial processes. The
temperature inside a refrigerator is controlled by a thermostat. The picture we see on the
television is a result of a controlled beam of electrons made to scan the television screen
in a selected pattern. A compact-disc player focuses a fine laser beam at the desired spot
on the rotating compact-disc in order to produce the desired music. While driving a car,
the driver is controlling the speed and direction of the car so as to reach the destination
quickly, without hitting anything on the way. The list is endless. Whether the control is
automatic (such as in the refrigerator, television or compact-disc player), or caused by a
human being (such as the car driver), it is an integral part of our daily existence. However,
control is not confined to artificial processes alone. Imagine living in a world where
the temperature is unbearably hot (or cold), without the life-supporting oxygen, water or
sunlight. We often do not realize how controlled the natural environment we live in is. The
composition, temperature and pressure of the earth's atmosphere are kept stable in their
livable state by an intricate set of natural processes. The daily variation of temperature
caused by the sun controls the metabolism of all living organisms. Even the simplest
life form is sustained by unimaginably complex chemical processes. The ultimate control
system is the human body, where the controlling mechanism is so complex that even
while sleeping, the brain regulates the heartbeat, body temperature and blood-pressure by
countless chemical and electrical impulses per second, in a way not quite understood yet.
(You have to wonder who designed that control system!) Hence, control is everywhere
we look, and is crucial for the existence of life itself.

A study of control involves developing a mathematical model for each component of
the control system. We have twice used the word system without defining it. A system
is a set of self-contained processes under study. A control system by definition consists
of the system to be controlled - called the plant - as well as the system which exercises
control over the plant, called the controller. A controller could be either human, or an
artificial device. The controller is said to supply a signal to the plant, called the input to
the plant (or the control input), in order to produce a desired response from the plant,
called the output from the plant. When referring to an isolated system, the terms input and
output are used to describe the signal that goes into a system, and the signal that comes
out of a system, respectively. Let us take the example of the control system consisting
of a car and its driver. If we select the car to be the plant, then the driver becomes the
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INTRODUCTION

controller, who applies an input to the plant in the form of pressing the gas pedal if it
is desired to increase the speed of the car. The speed increase can then be the output
from the plant. Note that in a control system, what control input can be applied to the
plant is determined by the physical processes of the plant (in this case, the car's engine),
but the output could be anything that can be directly measured (such as the car's speed
or its position). In other words, many different choices of the output can be available
at the same time, and the controller can use any number of them, depending upon the
application. Say if the driver wants to make sure she is obeying the highway speed limit,
she will be focusing on the speedometer. Hence, the speed becomes the plant output. If
she wants to stop well before a stop sign, the car's position with respect to the stop sign
becomes the plant output. If the driver is overtaking a truck on the highway, both the
speed and the position of the car vis-d-vis the truck are the plant outputs. Since the plant
output is the same as the output of the control system, it is simply called the output when
referring to the control system as a whole. After understanding the basic terminology of
the control system, let us now move on to see what different varieties of control systems
there are.

1.2 Open-Loop and Closed-Loop Control Systems

Let us return to the example of the car driver control system. We have encountered the
not so rare breed of drivers who generally boast of their driving skills with the following
words: "Oh I am so good that I can drive this car with my eyes closed!" Let us imagine
we give such a driver an opportunity to live up to that boast (without riding with her,
of course) and apply a blindfold. Now ask the driver to accelerate to a particular speed
(assuming that she continues driving in a straight line). While driving in this fashion,
the driver has absolutely no idea about what her actual speed is. By pressing the gas
pedal (control input) she hopes that the car's speed will come up to the desired value,
but has no means of verifying the actual increase in speed. Such a control system, in
which the control input is applied without the knowledge of the plant output, is called
an open-loop control system. Figure 1.1 shows a block-diagram of an open-loop control
system, where the sub-systems (controller and plant) are shown as rectangular blocks, with
arrows indicating input and output to each block. By now it must be clear that an open-
loop controller is like a rifle shooter who gets only one shot at the target. Hence, open-loop
control will be successful only if the controller has a pretty good prior knowledge of the
behavior of the plant, which can be defined as the relationship between the control input
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Figure 1.1
plant output

An open-loop control system: the controller applies the control input without knowing the
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OPEN-LOOP AND CLOSED-LOOP CONTROL SYSTEMS

and the plant output. If one knows what output a system will produce when a known
input is applied to it, one is said to know the system's behavior.

Mathematically, the relationship between the output of a linear plant and the control
input (the system's behavior) can be described by a transfer function (the concepts of
linear systems and transfer functions are explained in Chapter 2). Suppose the driver
knows from previous driving experience that, to maintain a speed of 50 kilometers per
hour, she needs to apply one kilogram of force on the gas pedal. Then the car's transfer
function is said to be 50 km/hr/kg. (This is a very simplified example. The actual car
is not going to have such a simple transfer function.} Now, if the driver can accurately
control the force exerted on the gas pedal, she can be quite confident of achieving her
target speed, even though blindfolded. However, as anybody reasonably experienced with
driving knows, there are many uncertainties - such as the condition of the road, tyre
pressure, the condition of the engine, or even the uncertainty in gas pedal force actually
being applied by the driver - which can cause a change in the car's behavior. If the
transfer function in the driver's mind was determined on smooth roads, with properly
inflated tyres and a well maintained engine, she is going to get a speed of less than
50 krn/hr with 1 kg force on the gas pedal if, say, the road she is driving on happens to
have rough patches. In addition, if a wind happens to be blowing opposite to the car's
direction of motion, a further change in the car's behavior will be produced. Such an
unknown and undesirable input to the plant, such as road roughness or the head-wind, is
called a noise. In the presence of uncertainty about the plant's behavior, or due to a noise
(or both), it is clear from the above example that an open-loop control system is unlikely
to be successful.

Suppose the driver decides to drive the car like a sane person (i.e. with both eyes
wide open). Now she can see her actual speed, as measured by the speedometer. In this
situation, the driver can adjust the force she applies to the pedal so as to get the desired
speed on the speedometer; it may not be a one shot approach, and some trial and error
might be required, causing the speed to initially overshoot or undershoot the desired value.
However, after some time (depending on the ability of the driver), the target speed can be
achieved (if it is within the capability of the car), irrespective of the condition of the road
or the presence of a wind. Note that now the driver - instead of applying a pre-determined
control input as in the open-loop case - is adjusting the control input according to the
actual observed output. Such a control system in which the control input is a function
of the plant's output is called a closed-loop system. Since in a closed-loop system the
controller is constantly in touch with the actual output, it is likely to succeed in achieving
the desired output even in the presence of noise and/or uncertainty in the linear plant's
behavior (transfer-function). The mechanism by which the information about the actual
output is conveyed to the controller is called feedback. On a block-diagram, the path
from the plant output to the controller input is called a feedback-loop. A block-diagram
example of a possible closed-loop system is given in Figure 1.2.

Comparing Figures 1.1 and 1.2, we find a new element in Figure 1.2 denoted by a circle
before the controller block, into which two arrows are leading and out of which one arrow
is emerging and leading to the controller. This circle is called a summing junction, which
adds the signals leading into it with the appropriate signs which are indicated adjacent to
the respective arrowheads. If a sign is omitted, a positive sign is assumed. The output of
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Figure 1.2 Example of a closed-loop control system with feedback; the controller applies a control
input based on the plant output

the summing junction is the arithmetic sum of its two (or more) inputs. Using the symbols
u (control input), y (output), and yd (desired output), we can see in Figure 1.2 that the
input to the controller is the error signal (yd — y). In Figure 1.2, the controller itself is a
system which produces an output (control input), u, based upon the input it receives in
the form of (yd — y)- Hence, the behavior of a linear controller could be mathematically
described by its transfer-function, which is the relationship between u and (yd — .v)- Note
that Figure 1.2 shows only a popular kind of closed-loop system. In other closed-loop
systems, the input to the controller could be different from the error signal (yd — y).
The controller transfer-function is the main design parameter in the design of a control
system and determines how rapidly - and with what maximum overshoot (i.e. maximum
value of | yd — y|) - the actual output, y, will become equal to the desired output, yd- We
will see later how the controller transfer-function can be obtained, given a set of design
requirements. (However, deriving the transfer-function of a human controller is beyond
the present science, as mentioned in the previous section.) When the desired output, yd, is
a constant, the resulting controller is called a regulator. If the desired output is changing
with time, the corresponding control system is called a tracking system. In any case, the
principal task of a closed-loop controller is to make (yd — y) = 0 as quickly as possible.
Figure 1.3 shows a possible plot of the actual output of a closed-loop control system.

Whereas the desired output yd has been achieved after some time in Figure 1.3, there
is a large maximum overshoot which could be unacceptable. A successful closed-loop
controller design should achieve both a small maximum overshoot, and a small error
magnitude |yd — y| as quickly as possible. In Chapter 4 we will see that the output of a
linear system to an arbitrary input consists of a fluctuating sort of response (called the
transient response), which begins as soon as the input is applied, and a settled kind of
response (called the steady-state response) after a long time has elapsed since the input
was initially applied. If the linear system is stable, the transient response would decay
to zero after sometime (stability is an important property of a system, and is discussed
in Section 2.8), and only the steady-state response would persist for a long time. The
transient response of a linear system depends largely upon the characteristics and the
initial state of the system, while the steady-state response depends both upon system's
characteristics and the input as a function of time, i.e. u(t). The maximum overshoot is
a property of the transient response, but the error magnitude | yd — y| at large time (or in
the limit t —>• oo) is a property of the steady-state response of the closed-loop system. In
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Desired output, yd

u Time (f)

Figure 1.3 Example of a closed-loop control system's response; the desired output is achieved after
some time, but there is a large maximum overshoot

Figure 1.3 the steady-state response asymptotically approaches a constant yd in the limit
t -> oo.

Figure 1.3 shows the basic fact that it is impossible to get the desired output imme-
diately. The reason why the output of a linear, stable system does not instantaneously
settle to its steady-state has to do with the inherent physical characteristics of all prac-
tical systems that involve either dissipation or storage of energy supplied by the input.
Examples of energy storage devices are a spring in a mechanical system, and a capacitor
in an electrical system. Examples of energy dissipation processes are mechanical friction,
heat transfer, and electrical resistance. Due to a transfer of energy from the applied input
to the energy storage or dissipation elements, there is initially a fluctuation of the total
energy of the system, which results in the transient response. As the time passes, the
energy contribution of storage/dissipative processes in a stable system declines rapidly,
and the total energy (hence, the output) of the system tends to the same function of time
as that of the applied input. To better understand this behavior of linear, stable systems,
consider a bucket with a small hole in its bottom as the system. The input is the flow
rate of water supplied to the bucket, which could be a specific function of time, and the
output is the total flow rate of water coming out of the bucket (from the hole, as well
as from the overflowing top). Initially, the bucket takes some time to fill due to the hole
(dissipative process) and its internal volume (storage device). However, after the bucket
is full, the output largely follows the changing input.

While the most common closed-loop control system is the feedback control system, as
shown in Figure 1.2, there are other possibilities such as the feedforward control system.
In a feedforward control system - whose example is shown in Figure 1.4 - in addition
to a feedback loop, a feedforward path from the desired output (y^) to the control input
is generally employed to counteract the effect of noise, or to reduce a known undesirable
plant behavior. The feedforward controller incorporates some a priori knowledge of the
plant's behavior, thereby reducing the burden on the feedback controller in controlling
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Figure 1.4 A closed-loop control system with a feedforward path; the engine RPM governor takes
care of the fuel flow disturbance, leaving the driver free to concentrate on achieving desired speed with
gas pedal force

the plant. Note that if the feedback controller is removed from Figure 1.4, the resulting
control system becomes open-loop type. Hence, a feedforward control system can be
regarded as a hybrid of open and closed-loop control systems. In the car driver example,
the feedforward controller could be an engine rotational speed governor that keeps the
engine's RPM constant in the presence of disturbance (noise) in the fuel flow rate caused
by known imperfections in the fuel supply system. This reduces the burden on the driver,
who would have been required to apply a rapidly changing gas pedal force to counteract
the fuel supply disturbance if there was no feedforward controller. Now the feedback
controller consists of the driver and the gas-pedal mechanism, and the control input is the
fuel flow into the engine, which is influenced by not only the gas-pedal force, but also by
the RPM governor output and the disturbance. It is clear from the present example that
many practical control systems can benefit from the feedforward arrangement.

In this section, we have seen that a control system can be classified as either open- or
closed-loop, depending upon the physical arrangement of its components. However, there
are other ways of classifying control systems, as discussed in the next section.

1.3 Other Classifications of Control Systems

Apart from being open- or closed-loop, a control system can be classified according to
the physical nature of the laws obeyed by the system, and the mathematical nature of the
governing differential equations. To understand such classifications, we must define the
state of a system, which is the fundamental concept in modern control. The state of a
system is any set of physical quantities which need to be specified at a given time in order
to completely determine the behavior of the system. This definition is a little confusing,
because it introduces another word, determine, which needs further explanation given in
the following paragraph. We will return to the concept of state in Chapter 3, but here let
us only say that the state is all the information we need about a system to tell what the
system is doing at any given time. For example, if one is given information about the
speed of a car and the positions of other vehicles on the road relative to the car, then
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one has sufficient information to drive the car safely. Thus, the state of such a system
consists of the car's speed and relative positions of other vehicles. However, for the same
system one could choose another set of physical quantities to be the system's state, such
as velocities of all other vehicles relative to the car, and the position of the car with
respect to the road divider. Hence, by definition the state is not a unique set of physical
quantities.

A control system is said to be deterministic when the set of physical laws governing the
system are such that if the state of the system at some time (called the initial conditions)
and the input are specified, then one can precisely predict the state at a later time. The laws
governing a deterministic system are called deterministic laws. Since the characteristics of
a deterministic system can be found merely by studying its response to initial conditions
(transient response), we often study such systems by taking the applied input to be zero.
A response to initial conditions when the applied input is zero depicts how the system's
state evolves from some initial time to that at a later time. Obviously, the evolution of
only a deterministic system can be determined. Going back to the definition of state, it is
clear that the latter is arrived at keeping a deterministic system in mind, but the concept of
state can also be used to describe systems that are not deterministic. A system that is not
deterministic is either stochastic, or has no laws governing it. A stochastic (also called
probabilistic) system has such governing laws that although the initial conditions (i.e.
state of a system at some time) are known in every detail, it is impossible to determine
the system's state at a later time. In other words, based upon the stochastic governing
laws and the initial conditions, one could only determine the probability of a state, rather
than the state itself. When we toss a perfect coin, we are dealing with a stochastic law that
states that both the possible outcomes of the toss (head or tail) have an equal probability
of 50 percent. We should, however, make a distinction between a physically stochastic-
system, and our ability (as humans) to predict the behavior of a deterministic system based
upon our measurement of the initial conditions and our understanding of the governing
laws. Due to an uncertainty in our knowledge of the governing deterministic laws, as
well as errors in measuring the initial conditions, we will frequently be unable to predict
the state of a deterministic system at a later time. Such a problem of unpredictability is
highlighted by a special class of deterministic systems, namely chaotic systems. A system
is called chaotic if even a small change in the initial conditions produces an arbitrarily
large change in the system's state at a later time.

An example of chaotic control systems is a double pendulum (Figure 1.5). It consists
of two masses, m\ and mi, joined together and suspended from point O by two rigid
massless links of lengths LI and L2 as shown. Here, the state of the system can be
defined by the angular displacements of the two links, 0\(t} and #2(0. as well as their
respective angular velocities, 0\ \t) and #7

( }(t). (In this book, the notation used for
representing a &th order time derivative of /(r) is f ( k ) ( t ) , i.e. dkf(t)/dtk = f{k}(t).
Thus, 0j(1)(0 denotes dO\(t)/dt, etc.) Suppose we do not apply an input to the system,
and begin observing the system at some time, t = 0, at which the initial conditions are,
say, 6*i(0) = 40°, 02(0) = 80°, #,( l)(0) = 0°/s, and 0^1)(0) = 0°/s. Then at a later time,
say after 100 s, the system's state will be very much different from what it would have
been if the initial conditions were, say, 0j(0) = 40.01°, 6>2(0) = 80°, 6>,(1)(0) = 0°/s, and
0( ^(0) = 0°/s. Figure 1.6 shows the time history of the angle Oi(t) between 85 s and 100 s
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Figure 1.5 A double pendulum is a chaotic system because a small change in its initial conditions
produces an arbitrarily large change in the system's state after some time

-100
90 95 100

Time (s)

Figure 1.6 Time history between 85 s and 100 s of angle QI of a double pendulum with mi = 1 kg,
m-i = 2 kg, LI = 1 m, and 1-2 = 2 m for the two sets of initial conditions #1 (0) = 40°, #2(0) = 80°,
0J1)(0) = 0%, 0^(0) = 0% and 0,(0) = 40.01°, 02(0) = 80°, 0,(1|(0) = 0%, 0^(0) =0%.
respectively

for the two sets of initial conditions, for a double pendulum with m\ — 1 kg, mi = 2 kg,
LI = 1 m, and LI = 2 m. Note that we know the governing laws of this deterministic
system, yet we cannot predict its state after a given time, because there will always be
some error in measuring the initial conditions. Chaotic systems are so interesting that they
have become the subject of specialization at many physics and engineering departments.

Any unpredictable system can be mistaken to be a stochastic system. Taking the
car driver example of Section 1.2, there may exist deterministic laws that govern the
road conditions, wind velocity, etc., but our ignorance about them causes us to treat
such phenomena as random noise, i.e. stochastic processes. Another situation when a
deterministic system may appear to be stochastic is exemplified by the toss of a coin
deliberately loaded to fall every time on one particular side (either head or tail). An
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unwary spectator may believe such a system to be stochastic, when actually it is very
much deterministic!

When we analyze and design control systems, we try to express their governing physical
laws by differential equations. The mathematical nature of the governing differential
equations provides another way of classifying control systems. Here we depart from the
realm of physics, and delve into mathematics. Depending upon whether the differential
equations used to describe a control system are linear or nonlinear in nature, we can call
the system either linear or nonlinear. Furthermore, a control system whose description
requires partial differential equations is called a distributed parameter system, whereas a
system requiring only ordinary differential equations is called a lumped parameter system.
A vibrating string, or a membrane is a distributed parameter system, because its properties
(mass and stiffness) are distributed in space. A mass suspended by a spring is a lumped
parameter system, because its mass and stiffness are concentrated at discrete points in
space. (A more common nomenclature of distributed and lumped parameter systems is
continuous and discrete systems, respectively, but we avoid this terminology in this book
as it might be confused with continuous time and discrete time systems.) A particular
system can be treated as linear, or nonlinear, distributed, or lumped parameter, depending
upon what aspects of its behavior we are interested in. For example, if we want to study
only small angular displacements of a simple pendulum, its differential equation of motion
can be treated to be linear; but if large angular displacements are to be studied, the same
pendulum is treated as a nonlinear system. Similarly, when we are interested in the motion
of a car as a whole, its state can be described by only two quantities: the position and
the velocity of the car. Hence, it can be treated as a lumped parameter system whose
entire mass is concentrated at one point (the center of mass). However, if we want to
take into account how the tyres of the car are deforming as it moves along an uneven
road, the car becomes a distributed parameter system whose state is described exactly by
an infinite set of quantities (such as deformations of all the points on the tyres, and their
time derivatives, in addition to the speed and position of the car). Other classifications
based upon the mathematical nature of governing differential equations will be discussed
in Chapter 2.

Yet another way of classifying control systems is whether their outputs are contin-
uous or discontinuous in time. If one can express the system's state (which is obtained
by solving the system's differential equations) as a continuous function of time, the
system is called continuous in time (or analog system). However, a majority of modern
control systems produce outputs that 'jump' (or are discontinuous) in time. Such control
systems are called discrete in time (or digital systems). Note that in the limit of very small
time steps, a digital system can be approximated as an analog system. In this book, we
will make this assumption quite often. If the time steps chosen to sample the discontin-
uous output are relatively large, then a digital system can have a significantly different
behaviour from that of a corresponding analog system. In modern applications, even
analog controllers are implemented on a digital processor, which can introduce digital
characteristics to the control system. Chapter 8 is devoted to the study of digital systems.

There are other minor classifications of control systems based upon the systems' char-
acteristics, such as stability, controllability, observability, etc., which we will take up
in subsequent chapters. Frequently, control systems are also classified based upon the
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number of inputs and outputs of the system, such as single-input, single-output system,
or two-input, three-output system, etc. In classical control (an object of Chapter 2)
the distinction between single-input, single-output (SISO) and multi-input, multi-output
(MIMO) systems is crucial.

1.4 On the Road to Control System Analysis
and Design

When we find an unidentified object on the street, the first thing we may do is prod or poke
it with a stick, pick it up and shake it, or even hit it with a hammer and hear the sound it
makes, in order to find out something about it. We treat an unknown control system in a
similar fashion, i.e. we apply some well known inputs to it and carefully observe how it
responds to those inputs. This has been an age old method of analyzing a system. Some
of the well known inputs applied to study a system are the singularity functions, thus
called due to their peculiar nature of being singular in the mathematical sense (their time
derivative tends to infinity at some time). Two prominent members of this zoo are the unit
step function and the unit impulse function. In Chapter 2, useful computer programs are
presented to enable you to find the response to impulse and step inputs - as well as the
response to an arbitrary input - of a single-input, single-output control system. Chapter 2
also discusses important properties of a control system, namely, performance, stability,
and robustness, and presents the analysis and design of linear control systems using the
classical approach of frequency response, and transform methods. Chapter 3 introduces
the state-space modeling for linear control systems, covering various applications from
all walks of engineering. The solution of a linear system's governing equations using
the state-space method is discussed in Chapter 4. In this chapter, many new computer
programs are presented to help you solve the state-equations for linear or nonlinear
systems.

The design of modern control systems using the state-space approach is introduced in
Chapter 5, which also discusses two important properties of a plant, namely its controlla-
bility and observability. In this chapter, it is first assumed that all the quantities defining
the state of a plant (called state variables) are available for exact measurement. However,
this assumption is not always practical, since some of the state variables may not be
measurable. Hence, we need a procedure for estimating the unmeasurable state variables
from the information provided by those variables that we can measure. Later sections of
Chapter 5 contains material about how this process of state estimation is carried out by
an observer, and how such an estimation can be incorporated into the control system in
the form of a compensator. Chapter 6 introduces the procedure of designing an optimal
control system, which means a control system meeting all the design requirements in
the most efficient manner. Chapter 6 also provides new computer programs for solving
important optimal control problems. Chapter 7 introduces the treatment of random signals
generated by stochastic systems, and extends the philosophy of state estimation to plants
with noise, which is treated as a random signal. Here we also learn how an optimal
state estimation can be carried out, and how a control system can be made robust with
respect to measurement and process noise. Chapter 8 presents the design and analysis of
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digital control systems (also called discrete time systems), and covers many modern digital
control applications. Finally, Chapter 9 introduces various advanced topics in modern
control, such as advanced robust control techniques, nonlinear control, etc. Some of the
topics contained in Chapter 9, such as input shaping control and rate-weighted optimal
control, are representative of the latest control techniques.

At the end of each chapter (except Chapter 1), you will find exercises that help you
grasp the essential concepts presented in the chapter. These exercises range from analytical
to numerical, and are designed to make you think, rather than apply ready-made formulas
for their solution. At the end of the book, answers to some numerical exercises are
provided to let you check the accuracy of your solutions.

Modern control design and analysis requires a lot of linear algebra (matrix multipli-
cation, inversion, calculation of eigenvalues and eigenvectors, etc.) which is not very
easy to perform manually. Try to remember the last time you attempted to invert a
4 x 4 matrix by hand! It can be a tedious process for any matrix whose size is greater
than 3 x 3 . The repetitive linear algebraic operations required in modern control design
and analysis are, however, easily implemented on a computer with the use of standard
programming techniques. A useful high-level programming language available for such
tasks is the MATLAB®, which not only provides the tools for carrying out the matrix
operations, but also contains several other features, such as the time-step integration
of linear or nonlinear governing differential equations, which are invaluable in modern
control analysis and design. For example, in Figure 1.6 the time-history of a double-
pendulum has been obtained by solving the coupled governing nonlinear differential
equations using MATLAB. Many of the numerical examples contained in this book have
been solved using MATLAB. Although not required for doing the exercises at the end of
each chapter, it is recommended that you familiarize yourself with this useful language
with the help of Appendix A, which contains information about the commonly used
MATLAB operators in modern control applications. Many people, who shied away from
modern control courses because of their dread of linear algebra, began taking interest
in the subject when MATLAB became handy. Nowadays, personal computer versions of
MATLAB are commonly applied to practical problems across the board, including control
of aerospace vehicles, magnetically levitated trains, and even stock-market applications.
You may find MATLAB available at your university's or organization's computer center.
While Appendix A contains useful information about MATLAB which will help you in
solving most of the modern control problems, it is recommended that you check with
the MATLAB user's guide [1] at your computer center for further details that may be
required for advanced applications.

SIMULINK® is a very useful Graphical Users Interface (GUI) tool for modeling control
systems, and simulating their time response to specified inputs. It lets you work directly
with the block-diagrams (rather than mathematical equations) for designing and analyzing

® MATLAB, SIMULINK and Control System Toolbox are registered trademarks of MathWorks, Inc.
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control systems. For this purpose, numerous linear and nonlinear blocks, input sources,
and output devices are available, so that you can easily put together almost any practical
control system. Another advantage of using SIMULINK is that it works seamlessly with
MATLAB, and can draw upon the vast programming features and function library of
MATLAB. A SIMULINK block-diagram can be converted into a MATLAB program
(called M-file). In other words, a SIMULINK block-diagram does all the programming
for you, so that you are free to worry about other practical aspects of a control system's
design and implementation. With advanced features (such as the Real Time Workshop for
C-code generation, and specialized block-sets) one can also use SIMULINK for practical
implementation of control systems [2]. We will be using SIMULINK as a design and
analysis tool, especially in simulating the response of a control system designed with
MATLAB.

For solving many problems in control, you will find the Control System Toolbox® [3]
for MATLAB very useful. It contains a set of MATLAB M-files of numerical procedures
that are commonly used to design and analyze modern control systems. The Control
System Toolbox is available at a small extra cost when you purchase MATLAB, and is
likely to be installed at your computer center if it has MATLAB. Many solved examples
presented in this book require the Control System Toolbox. In the solved examples,
effort has been made to ensure that the application of MATLAB is clear and direct. This
is done by directly presenting the MATLAB line commands - and some MATLAB M-
files - followed by the numerical values resulting after executing those commands. Since
the commands are presented exactly as they would appear in a MATLAB workspace, the
reader can easily reproduce all the computations presented in the book. Again, take some
time to familiarize yourself with MATLAB, SIMULINK and the Control System Toolbox
by reading Appendix A.
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