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NYQUIST STABILITY CRITERION 77

Note that the matrix R is used to store the roots in its rows. The resulting plot
is shown in Figure 2.36. The complex conjugate roots are seen to cross into the
right half plane for K = 1.15. Hence, the system is stable for 1 < K < 1.15 and
unstable for K > 1.15.
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Figure 2.36 Root-locus of the closed-loop system of Example 2.20 as K varies from 0.3 10 1.3

2.10 Nyquist Stability Criterion

The Nyquist criterion determines a closed-loop system’s stability using the complex-variable
theory. It employs a polar plot (see Section 2.4) of the open-loop frequency response,
G(iw)H (iw), as w increases from —oo to 0o. Such a polar plot is called a Nyquist plot.
In the s-plane, the imaginary axis denotes an increase of @ from —oo to co. Hence, the
Nyquist plot of G(iw)H (iw), as w increases from —oo to oo is said to be a mapping in
the G(s)H (s) plane (i.e. the plane defined by real and imaginary parts of G(s)H (s)) of
all the points on the imaginary axis in the s-plane. The direction of the Nyquist plot indi-
cates the direction of increasing w. A polar plot is usually restricted to w between 0 and
oo. However, note that a polar plot of G(iw)H (iw) drawn for negative frequencies is the
complex conjugate of the polar plot of G (iw) H (iw) drawn for positive frequencies. In other
words, the Nyquist plot is symmetrical about the real axis. Hence, the practical technique
of plotting Nyquist plot is to first make the polar plot for w increasing from 0 to oo, and
then draw a mirror image of the polar plot (about the real axis) to represent the other half
of the Nyquist plot (i.e. the frequency range —oo < w < 0). The direction of the mirror
image polar plot would be clear from the w = 0 point location on the original polar plot,
where the two plots should necessarily meet. The two mirror images should also meet at
w — oo and w — —o0o, respectively. Hence, w — =00 is a single point on the Nyquist
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78 LINEAR SYSTEMS AND CLASSICAL CONTROL

plot, and the positive and negative frequency branches of a Nyquist plot form a closed
contour. It is quite possible that the two polar plots for positive and negative frequencies
of some functions may overlap. Figure 2.21 showed the polar plot for positive frequencies.
You may verify that a polar plot of the same frequency response for negative frequencies
overlaps the curve shown in Figure 2.21, but has an opposite direction for increasing w.

Since the Nyquist plot of G(s)H(s) is a closed contour for s = iw when —00 < w <
oo, whose direction is indicated by increasing w, the only possibility of the positive
and negative frequency branches meeting at w — oo is that the Laplace variable, s,
must traverse an infinite semi-circle in the right-half s-plane. In other words, the region
enclosed by the Nyquist plot in the G(s) H(s) plane is a mapping of the entire right half
s-plane. This fact is depicted in Figure 2.37. The direction of the curves in Figure 2.37
indicate the direction in which the frequency, w is increasing. The point G(s)H(s) = —1
has a special significance in the Nyquist plot, since it denotes the closed-loop characteristic
equation, 1 + G(s)H(s) = 0.

The application of Nyquist stability criteria is restricted to linear, time-invariant control
systems with a proper open-loop transfer function, G(s) H(s). Since G(s)H (s) of a linear,
time-invariant control system is a rational function of s, a point in the s-plane corresponds
to only one point in the G(s) H (s) plane (such a mapping is called one-to-one mapping).
Since G(s)H (s) is proper, it implies that lim;_, G(s)H (s) must be either zero, or a
non-zero constant. A one-to-one mapping from s-plane to the G(s)H (s)-plane in which
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Figure 2.37 The mapping of right-half s-plane into a region enclosed by the Nyquist plot in the
G(s)H(s) plane
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NYQUIST STABILITY CRITERION 79

the limit lim; ., o, G(s) H (s) exists and is finite is called a conformal mapping. The Nyquist
stability criterion is based on a fundamental principle of complex algebra, called Cauchy’s
theorem, which states that if a closed contour with an anti-clockwise direction in the
s-plane, which encloses P poles and Z zeros of | + G(s)H(s), and which does not
pass through any poles or zeros of 1 + G(s)H(s), is conformally mapped into a closed
contour (i.e. Nyquist plot) in the G(s)H (s) plane, then the latter will encircle the point
G(s)H(s) = —1 exactly N times in an anti-clockwise direction, where N = P — Z. An
anti-clockwise encirclement of G(s)H (s) = —1 is considered positive, while a clockwise
encirclement is considered negative. Hence, N could be either positive, negative, or zero.
The proof of Cauchy’s theorem is beyond the scope of this book, but can be found
in D’Azzo and Houpis {2}, or in a textbook on complex variables. Applying Cauchy’s
theorem to the contour enclosing the entire right-half s-plane (shown in Figure 2.37), we
find that for closed-loop stability we must have no zeros of the closed-loop characteristic
polynomial, 14 G(s)H(s), in the right-half s-plane (i.e. Z =0 must hold), and thus
N = P, which implies that for close-loop stability we must have exactly as many anti-
clockwise encirclements of the point G(s)H (s) = —1 as the number poles of G(s)H (s) in
the right-half s-plane. (The Nyquist plot shown in Figure 2.37 contains one anti-clockwise
encirclement of —1, i.e. N = 1. The system shown in Figure 2.37 would be stable if there
is exactly one pole of G{s)H(s) in the right-half s-plane.)

Note that Cauchy’s theorem does not allow the presence of poles of G(s)H(s) any-
where on the imaginary axis of s-plane. If G(s)H (s) has poles on the imaginary axis,
the closed contour in the s-plane (Figure 2.37) should be modified such that it passes just
around the poles on the imaginary axis. Hence, the closed contour should have loops of
infinitesimal radius passing around the poles of G(s)H (s) on the imaginary axis, and the
Nyquist plot would be a conformal mapping of such a contour in the G(s)H(s) plane.
Studying the effect of each detour around imaginary axis poles on the Nyquist plot is
necessary, and could be a tedious process by hand [2].

You can make the Nyquist plot using the polar plot of G (iw)H (iw) drawn for positive
[frequencies and its complex conjugate for negative frequencies, using the intrinsic MATLAB
command polar (see Example 2.8). The abscissa of the polar plot must be modified to locate
the point G(s)H (s) = —1 on the negative real axis (i.e. the radial line corresponding to
¢ = 180° in Figure 2.21). (Actually, the polar plot for negative frequencies is not required,
since the number of encirclements can be determined from the shape of the polar plot of
G (iw)H (iw) drawn for positive frequencies near the point —1, and the fact that the negative
frequency plot is the mirror image of the positive frequency plot.) An easier way of making
the Nyquist plot is by the MATLAB Control System Toolbox (CST) command nyquist(sys),
where sys denotes the LTI object of the open-loop transfer function, G(s) H (s).

Example 2.21

The Nyquist plot of the open-loop transfer function, G(s)H(s) of the system in
Figure 2.32 with G(s) = (252 + 55 4+ 1)/(s®> — 2s +3), and H(s) = 1 is obtained
in Figure 2.38, using the following MATLAB command:

>>pum=[2 5 1]; den=[1 -2 3]; GH=tf(num,den); nyquist(GH) <enter>
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80 LINEAR SYSTEMS AND CLASSICAL CONTROL

cation about the presence of multiple zeros of 1+ G(s)H(s) at s =0, which cause
closed-loop instability due to stability criterion 3 of Section 2.8. Another limitation of
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Figure 2.38 Nyquist plot of the closed-loop system in Example 2.21

It is clear from the Nyquist plot in Figure 2.38 that the point —1 is encircled
in the anticlockwise direction exactly twice. Hence, N = 2. The open-loop transfer
function G(s) H(s) has two poles with positive real parts (i.e. P = 2), which is seen
by using the MATLAB CST command damp as follows:

>>damp(den) <enter>

Eigenvalue Damping Freq. (rad/sec)
1.0000+1.4142i -0.5774 1.7321
1.0000-1.4142i -0.5774 1.7321

Since N = P =2, Cauchy’s theorem dictates that the number of zeros of 1+
G(s)H ((s) in the right-half plane is Z = P — N = 0, which implies that the closed-
loop transfer function has no poles in the right half plane. Hence by the Nyquist
stability criterion, the closed-loop system is stable. You can verify that the closed-
loop characteristic equation is 1 + G(s)H(s) =0, or 352 + 35 + 4 = 0, resulting in
the closed-loop poles —0.5 4 1.0408i.

A major limitation of the Nyquist stability criterion is that it does not give any indi-

the Nyquist stability criterion is that it cannot be applied in cases where the Nyquist plot

of G(s)H((s) passes through the point G(s)H(s) = —1, because in that case the number

of encirclements of —1 point are indeterminate.
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