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2.11 Robustness

Robustness of a control system is related to its sensitivity to unmodeled dynamics, i.e. part
of the behavior of an actual control system which is ror included in the mathematical
model of the control system (governing differential equations, transfer function, etc.).
Since we have to deal with actual control systems in which it is impossible (or difficult)
to mathematically model all physical processes, we are always left with the question:
will the control system based upon a mathematical model really work? In Chapter 1, we
saw that disturbances (or noise) such as road roughness, tyre condition, wind velocity,
etc., cannot be mathematically modeled when discussing a control system for the car
driver example. If a control system meets its performance and stability objectives in the
presence of all kinds of expected noises (whose mathematical models are uncertain),
then the control system is said to be robust. Hence, robustness is a desirable property that
dictates whether a control system is immune to uncertainties in its mathematical model.
More specifically, robustness can be subdivided into stability robustness and performance
robustness, depending upon whether we are looking at the robustness of the stability of
a system (determined by the location of the system’s poles), or that of its performance
objectives (such as peak overshoot, settling time, etc.).

We intuitively felt in Chapter 1 that a closed-loop system is more robust than an
open-loop system. We are now in a position to mathematically compare the sensitivities
of open and closed-loop systems, representatives of which are shown in Figure 2.39. For
simplicity, it is assumed that for both open and closed loop systems, the controller transfer
function is a constant, given by K, while the plant transfer function is G(s).The transfer
function of the open-loop control-system, F,(s), is given by

Fols) = Y(s)/Ya(s) = KG(s) (2.154)

while that of the closed-loop system (F.(s)) is given by Eq. (2.124)

Feo(s) = Y(s)/Ya(s) = KG(s)/[1 + KG(s)] (2.155)
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Figure 2.39 Single-input, single-output open-loop (a) and closed-loop {b) control systems with
controller transfer function K and plant transfer function G(s)
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82 LINEAR SYSTEMS AND CLASSICAL CONTROL

Since the controller transfer function, K, is derived based on some mathematical model
of G(s), we can determine each control system’s robustness by calculating the sensitivity
of the overall transfer function, Y (s)/Y4(s), to variation in K. Mathematically, the sensi-
tivity of either open-loop, or closed-loop system to variation in controller gain, K, can
be expressed as

S(s) = [Ya(s)/ Y (5)]0[Y (s)/ Ya(s)]/0K (2.156)

where d[Y (s)/Y4a(s)]/0K denotes the change in the transfer function due to a change
in K. Then the sensitivities of the open and closed-loop systems to variation in K are
given by

So(s) = [1/F,(s)]0Fo(s)/dK = 1/K (2.157)

and
Sc(s) = [1/Fc(s)IaFc(s) /0K = 1/[K(1 + KG(s))] (2.158)

The ratio of the open-loop sensitivity to the closed-loop sensitivity S,(s)/Sc(s) is thus
So(s)/Sc(s) = [1+ KG(s)] (2.159)

which is nothing else but our well known acquaintance, the return difference function
(or the closed-loop characteristic polynomial)! The magnitude of the return difference,
|1 + K G(s)|, is greater than 1, which confirms that an open-loop system is more sensitive
(or less robust) when compared to the closed-loop system to variations in controlier gain.
The greater the value of the return difference, the larger is the robustness of a closed-
loop system (Eq. (2.158)). Hence, one can measure a closed-loop system’s robustness by
determining the return difference function in the frequency domain, s = iw, for a range
of frequencies, w.

We need not confine ourselves to closed-loop systems with a constant controller
transfer function when talking about robustness; let us consider a cascade closed-loop
system (Figure 2.32) with a controller transfer function, H(s). Either the Bode plot of
G(iw)H(iw), or the Nyquist plot of G(s)H(s) can be utilized to convey information
about a system’s stability robustness (i.e. how robust is the stability of the system with
respect to variations in the system’s model). The Nyquist plot is more intuitive for
analyzing stability robustness. From Nyquist stability theorem, we know that the closed-
loop system’s stability is determined from the encirclements by the locus of G(s)H (s)
of the point —1 in the G(s)H(s) plane. Therefore, a measure of stability robustness can
be how far away the locus of G(s)H(s) is to the point —1, which indicates how far
the system is from being unstable. The farther away the G(s)H(s) locus is from —1,
the greater is its stability robustness, which is also called the margin of stability. The
closest distance of G(s)H(s) from —1 can be defined in the complex G(s)H (s) plane
by two quantities, called the gain margin and the phase margin, which are illustrated in
Figure 2.40 depicting a typical Nyquist diagram for a stable closed-loop system. A circle
of unit radius is overlaid on the Nyquist plot. The closest distance of the Nyquist plot of
G(s)H(s) to —1 is indicated by two points A and B. Point A denotes the intersection
of G(s)H(s) with the negative real axis nearest to the point —1, while point B denotes
the intersection of G(s)H (s) with the unit circle. Point A is situated at a distance o from
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Figure 2.40 The Nyquist plot of G(s)H(s) showing the gain and phase margins

the origin, while point B is located on the unit circle at an angle 8 from the positive real
axis. It is clear that the gain of G(s)H (s) at point B is unity, while its phase at the same
point is 6.

The gain margin is defined as the factor by which the gain of G(s)H(s) can be
increased before the locus of G(s)H (s) hits the point —1. From Figure 2.40, it is evident
that the gain margin is equal to 1/c, or in dB it is given by

Gain Margin in dB = 20 log,y(1/a) (2.160)

A negative gain margin indicates that the system is unstable. The phase margin is defined
as the difference between the phase of G(s)H(s) at point B, 8, and the phase of the
negative real axis, —180° (on which the point —1 is located). Thus, phase margin is
given by the angle 8 in Figure 2.40:

Phase Margin = 8 = 6 — (—180°) = 6 + 180° (2.161)

The gain margin indicates how far away the gain of G(s)H (s) is from 1 (i.e. the gain of
the point —1) when its phase is —180° (point A). Similarly, the phase margin indicates
how far away the phase of G(s)H(s) is from —180° (i.e. the phase of the point —1)
when the gain of G(s)H(s) is 1 (point B).

Since the Bode plot is a plot of gain and phase in frequency domain (i.e. when s = iw),
we can use the Bode plot of G(s)H (s) to determine the gain and phase margins. In the
Bode gain plot, the unit circle of the Nyquist plot (Figure 2.40) translates into the line for
or zero dB gain (i.e. unit magnitude, |G (iw)H (iw)|), while the negative real axis of the
Nyquist plot transforms into the line for —180° phase in the Bode phase plot. Therefore,
the gain margin is simply the gain of G(iw)H (iw) when its phase crosses the —180°
phase line, and the phase margin is the difference between the phase of G(iw)H (iw) and
—180° when the gain of G(iw)H (iw) crosses the 0 dB line. The frequency for which the
phase of G(iw)H (iw) crosses the —180° line is called the phase crossover frequency, wp,
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84 LINEAR SYSTEMS AND CLASSICAL CONTROL

while the frequency at which the gain of G(iw)H (iw) crosses the 0 dB line is called the
gain crossover frequency, wg.

Example 2.22

Consider the closed-loop system of Figure 2.32, with G(s) = 2s2+5s+1) / s+
25 +3) and H(s) = 1/s%. Figure 2.41 shows the Bode plot of G(iw)H (iw) which
is obtained by the following MATLAB CST command:

>>num=[2 5 1]; den=conv([1 2 3],[1 0 0]); G=tf(num,den); bode(G) <enter>

Figure 2.41 shows that the phase crosses the —180° line at the phase crossover
frequency, wp = 3.606 rad/s. The gain present at this frequency is —14.32 dB.
Hence, the gain margin is 14.32 dB, indicating that the gain of G(s)H(s) can be
increased by 14.32 dB before its Nyquist locus hits the point —1. In Figure 2.41,
we can see that the 0 dB gain line is crossed at gain crossover frequency, wg =
1.691 rad/s, for which the corresponding phase angle is —148.47°. Therefore, the
phase margin is —148.47° 4 180° = 31.53°.

The numerical values of gain margin, phase margin, gain crossover frequency,
and phase crossover frequency, can be directly obtained using the MATLAB
CST command margin(sys), or margin(mag,phase,w), where mag,phase,w are
the magnitude, phase, and frequency vectors obtained using the command
[mag,phase,w] = bode(sys,w). For a system having a frequency response,
G(iw)H (iw), which is changing rapidly with frequency (such as in the present

wg = 1.691 rad/s

100

50

Gain (dB)

Gain margin
=14.3dB

_50 oo :I:Z:JZ
10 10°

Frequency (rad/sec)

MR |
T O N B c
o ©
B 450 fbee e A L g3
o oo
g : &
£ 80 i bbb b i B Y £
102 10-" 100 3 10
wp = 3.606 rad/s

Figure 2.41 Bode plot of G(s)H(s) for the closed-loop system of Example 2.22
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| example), the command margin(sys) may yield inaccurate results. Therefore, it is
| advisable to use the command margin(mag,phase,w), with the magnitude and phase
generated at a large number of frequencies in the range where the frequency response
is changing rapidly. This is done by using the command w = logspace(a, b, n),
which generates n equally space frequencies between 10* and 10° rad/s, and stores
them in vector w. Then the command [mag,phase,w] = bode(sys,w) will give the
desired magnitude and phase vectors from which the gain and phase margins can
be calculated. This procedure is illustrated for the present example by the following
commands:

>>num={2 5 1]; den=conv([1 2 3],[1 0 0]); w=logspace(-2,1,1000);
G=tf(num,den);

& >>[mag,phase,w]=bode(G); <enter>

>>margin(mag,phase,w) <enter>

A Bode plot results, with computed gain and phase margins and the corresponding |
crossover frequencies indicated at the top of the figure (Figure 2.42). .

Another way of obtaining gain and phase margins is from the Nichols plot, which |
is a plot of the gain of the open-loop frequency response, G(iw)H (iw), against its
phase. The gain and phase margins can be directly read from the resulting plot |
in which the point —1 of the Nyquist plot corresponds to the point 0 dB, —180°. |

Gm =14.32 dB, (w = 3.606)
Pm=31.53 deg. (w=1.691)
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Figure 2.42 Gain and phase margins and crossover frequencies for the system of Example 2.22
obtained using the MATLAB Control System Toolbox command margin :
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In addition to the open-loop gain and phase, the Nichols plot shows contours of
constant closed-loop magnitude and phase, |Y (iw)/ Yq(iw)|, and ¢ (w), given by

Y(iw)/Yy(iw) = Gliw)H(iw)/[1 + G(iw)H (iw)]
= |Y(iw)/Yq(iw)] €% (2.162)

It can be shown that the closed-loop gain and phase are related to the open-loop
gain and phase |G (iw)H (iw)| and 6, respectively, by the following equations:

1Y (iw)/ Ya(iw)| = 1/[1 + 1/|G(iw)H (iw|?
+2¢0s(8)/|G(iw)H (iw|]'? (2.163)
¢(w) = —tan"'{sin(8)/[cos(8) + |G (iw)H (iw|]} (2.164)

where G(iw)H(iw) = |G(iw)H (iw|e®. Seeing the formidable nature of
Eqgs. (2.163) and (2.164), plotting the contours of constant closed-loop gain and
phase by hand appears impossible. However, MATLAB again comes to our rescue
by providing the Control System Toolbox (CST) command nichols(sys) for plotting
the open-loop gain and phase, and the command ngrid for plotting the contours of
the closed-loop gain and phase. Here sys denotes the LTI object of the open-loop
transfer function, G(s)H (s). Figure 2.43 shows the Nichols plot of the system in
Example 2.22 obtained using the following MATLAB commands:

>>num=[2 5 1]; den=conv([1 0 0],[1 2 3]); G=tf(num,den); ngrid( ‘new’);
nichols(G) <enter>
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Figure 2.43 Nichols plot for the system of Example 2.22
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