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CLOSED-LOOP COMPENSATION TECHNIQUES 87

The gain and phase margins are directly read from Figure 2.43 as shown.
However, the crossover frequencies cannot be obtained from the Nichols plot. Apart
from giving the gain and phase margins, the Nichols plot can be used to design and
analyze the closed-loop frequency response of the system. The intersection of the
G (iw)H (iw) Nichols plot with the closed-loop gain contours give the closed-loop
gain frequency response, |Y (iw)/Yq(iw)|. The frequencies at the intersection points
can be obtained from a Bode gain plot of G (iw)H (iw). However, such a procedure
is fairly complicated, and it is easier to get the closed-loop frequency response
directly from the Bode plot of Y (iw)/ Y4(iw).

We have seen how the stability robustness of a closed-loop control system is defined by
the gain and phase margins determined from the open-loop transfer function, G(s)H (s).
We have considered variations in the overall transfer function, Y (s)/Y4(s), for defining
robustness, and shown that closed-loop systems are more robust to such variations than
open-loop systems. Variations in the overall transfer function are called process noise.
However, closed-loop systems are susceptible to another form of noise, which is absent
in open-loop systems, and which arises due to errors in measuring (and feeding back) the
output, Y (s). Such a noise is called measurement noise. Invariably, the measurement noise
is caused by imperfections in the sensors used to measure the output, and usually occurs
at higher frequencies than the natural frequencies of the closed-loop system. To reduce the
sensitivity of a closed-loop system to measurement noise (or to make the system robust
with respect to measurement noise), the frequency response of the closed-loop system
must have smaller gains at higher frequencies. This requirement results in the magnitude
Bode plot of the closed-loop system decaying rapidly (or rolling-off ) with frequency, at
high frequencies. Hence, a controller transfer function must be selected to provide not
only good gain and phase margins, which indicate the closed-loop system’s robustness
to process noise, but also a large decay (or roll-off) of the gain at high frequencies,
indicating robustness due to the measurement noise.

While designing a closed-loop system, one is not only interested in stability in the
presence of modeling uncertainties (such as process and measurement noise), but also
in maintaining a desired level of performance, i.e. one would like to achieve perfor-
mance robustness as well. It can be appreciated that for achieving performance robust-
ness, we should first achieve stability robustness (i.e. there is no point in talking about
the performance of an unstable control system). Criteria for achieving stability and
performance robustness of multivariable systems are more generally expressed with the
use of modern state-space methods (rather than the classical single-input, single-output,
frequency domain procedures), as discussed in Chapter 7.

2.12 Closed-Loop Compensation Techniques for
Single-Input, Single-Output Systems

We have seen in the previous sections how the steady-state error, stability, and gain and
phase margins can be affected by changing the controller transfer function, H(s), in a
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88 LINEAR SYSTEMS AND CLASSICAL CONTROL

typical single-input, single-output closed-loop system of Figure 2.32. Since we can use
H (s) to compensate for the poor characteristics of a plant, G(s), such a controller, H(s),
is called a compensator, and the procedure of selecting a controller, H(s), in order to
remove the deficiencies of the plant, G(s), (such as improving stability, performance, and
robustness), is called closed-loop compensation. Classical control techniques of designing
single-input, single-output control systems based upon their frequency response charac-
teristics largely rely upon closed-loop compensation. We will consider some commonly
employed closed-loop compensation techniques. Closed-loop compensation is generally
of two types: cascade (or series) compensation in which H(s) is placed in series with the
plant (Figure 2.32), and feedback (or parallel) compensation in which H(s) is placed in
the feedback path of G(s) (Figure 2.35). Cascade and feedback compensation represent
two alternatives for achieving the same closed-loop characteristics. Where we insert the
compensator in the control system depends largely upon the physical aspects of imple-
mentation. We study only cascade compensation techniques here, which can be easily
extended to feedback compensation.

2.12.1 Proportional-integral-derivative compensation

A popularly used compensator with the transfer function, H(s) = (Kps? + Kps +
K1)/s, where Kp, Kp, and Ky are constants, is called the proportional plus integral
plus derivative (PID) compensator, because its transfer function can be expressed as
H(s) = Kp + Kps + K\/s, signifying that the output of the controller, U(s), is a sum
of its input, E(s), multiplied by constant Kp, the integral of the input times Kj,
and the derivative of the input times Kp, i.e. U(s) = KpE(s) + K1E(s)/s + KpsE(s)
(recall that E(s)/s is the Laplace transform of the integral of the function, e(t),
and sE(s) is the Laplace transform of the derivative of e(t) if the initial conditions
are zero). PID compensators are very common in industrial applications due to their
good robustness over a wide frequency range. The presence of the integral term, K/s.
in H(s) increases the type of the closed-loop system due to the pole at the origin.
thereby reducing the steady-state error. The derivative term, Kps, and the proportional
term, Kp, can be used to place two zeros of H(s) at suitable locations, to change
the phase characteristics of the closed-loop system. Let us consider an example of
PID compensation.

Example 2.23

Consider a hard-disk read/write head positioning system with the following transfer
function:

Y (5)/U(s) = G(s) = 700/(s> + 155 + 100 000) (2.165)

The output, Y (s), is the angular position of the head in radians, while the input,
U (s), is the current in milli-Amperes (mA) supplied to the head positioning solenoid.
The poles, natural frequencies, and damping-ratios for this second order plant are
as follows:
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>>num=700; den = [1 15 1e5]; damp(den) <enter>

Eigenvalue Damping Freg. (rad/sec)
-7.5000e+000+3.1614e+002i 2.3717e-002 3.1623e+002
-7.5000e+000-3.1614e+0021 2.3717e-002 3.1623e+002

Note that the damping is very small, and hence the head positioning system,
will oscillate a lot before coming to a steady-state. Since the plant is of type 0,
the steady-state error due to a step input will be non-zero. To make the steady-
state error zero for a step input, we initially choose a PID compensator with §
Kp =0, Kp = 1, and K7 = 1100, which makes the controller transfer function the &
following: .

H(s) = (s + 1100)/s (2.166)

Since H (s) has no derivative term, it is essentially a proportional-plus-integral (P1)
compensator, with a zero at s = —1100 and a pole at s = 0. Connecting H(s) and
G(s) in series, and then closing the feedback loop as shown in Figure 2.32, we get
the following closed-loop transfer function:

Y (s)/ Ya(s) = (700s 4+ 770000)/(s* + 1557 + 100700s +770000) (2.167) f

The Bode plots of the plant, G(s), the compensator, H(s), and the closed-loop }
system are obtained as follows, and are shown in Figure 2.44:

>>G=tf (num,den); w=logspace(-1,4); [magl,phasel,w]=bode(G,w); %
Bode plot of the plant <enter>
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Figure 2.44 Bode plots of the plant, Pl compensator, and closed-loop system for the hard-disk
read/write head b
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>>ni=[1 1100]; di1=[{1 O];H=tf(n1,d1); [mag2,phase2,w]=bode(H,w); %
Bode plot of the compensator <enter>

>>nCL=[700 770 000]; dCL=[1 15 100 700 770 000]; GCL=tf(nCL,dCL);
<enter>

>>[mag3,phase3,w}=bode(GCL,w); % Bode plot of the closed-loop system
<enter>

Note from Figure 2.44 that the Pl compensator increases the gain, while
decreasing the phase at low frequencies, and leaves the high frequency gain
unaffected. The DC gain of the closed-loop system is brought to 0 dB, indicating
that the step response will have a zero steady-state error. There is a reduction
in the gain margin of the closed-loop system due to the increased gain at low
frequencies, when compared to that of the plant, indicating a loss of robustness.
The plant’s natural frequency of 316.23 rad/s is visible as a peak in the gain plot.
The closed-loop poles are the following:

>>damp (dCL) <enter>

Eigenvalue Damping Freq. (rad/sec)

-3.6746e+000+3.1722e+0021i 1.1583e-002 3.1724e+002
-3.6746e+000-3.1722e+0021i 1.1583e-002 3.1724e+002
-7.6507e+000 1.0000e+000 7.6507e+000

Note that the closed-loop damping near plant’s natural frequency is slightly reduced,
while another pole is placed at s = —7.6507. How does this closed-loop pole config-
uration affect the step response of the system? This question is best answered by
comparing the plant’s step response with that of the closed-loop system. The step
responses are calculated using the M-file stepresp.m of Table 2.3 as follows:

>>[s1,t} = stepresp(num,den,0,0.01,1); % step response of the plant
<enter>

>>[s2,t] = stepresp(nCL,dCL,0,0.01,1); % step response of the
closed-1loop system <enter>

The two step responses are compared in Figure 2.45. Note that while the closed-
loop steady-state error is brought to zero, the settling time and the large number of
oscillations of the plant are unaffected.

Furthermore, let us compare the gain and phase margins of the closed-loop system
with those of the plant, to see how the stability robustness is affected. The gain and
phase margins of the plant, with the respective crossover frequencies, are calculated
using the command margin as follows:

>>[gm,pm,wg,wpl=margin(G) <enter>

gm =
Inf
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Figure 2.45 Step responses of the plant and the Pl compensated closed-loop system for the
hard-disk read/write head

pm =
Inf
wg =
NaN
wp =
NaN

where inf denotes 0o, and NaN stands for ‘not a number’, i.e. an undefined quantity.
The plant thus has infinite gain and phase margins, and the corresponding crossover
frequencies are thus undefined. The margins for the closed-loop system are the
following:

>>[gmCL, pmCL,wgCL ,wpCL] = margin(GCL) <enter>

gmCL =
0.9750
pmCL =
-3.8267
wgCL =
318.4062
wpCL =
318.6843

Both gain and phase margins of the closed-loop system have been drastically reduced
to only 0.975 (—0.22 dB) and —3.8267°, respectively, with the gain and phase
crossover frequencies quite close together at 318.7 rad/s and 318.4 rad/s, respec-
tively. Clearly, the closed-loop system is quite less robust than the plant. In summary,
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the PI compensator given by Eq. (2.166) not only results in a highly oscillatory
response, but also a significant loss in robustness.

Let us now improve the PID compensation by selecting the values of Kp, Kp,
and Kj, that lead to a desired closed-loop response. It is desirable to have a well
damped closed-loop response, to reduce the number of oscillations, as well as the
settling time. Hence, let us select a damping-ratio of ¢ = 0.707 for the closed-loop
system, without changing the plant’s natural frequency, w, = 316.23 rad/s. The
general transfer function of the forward path, G(s)H(s), can then be written as
follows:

G(s)H(s) = 700(Kps® + Kps + K1)/[s(s* + 155 + 100000)]  (2.168)

Note that the closed-loop system’s type is increased from O to 1, due to the presence
of the pole at s = 0 in G(s)H (s). Hence, the steady-state error to step input will be
zero, irrespective of the values of Kp, Kp, and K. The closed-loop transfer function
is G(s)H (s)/[1 + G(s)H (s)], which can be expressed as N(s)/D(s), where N(s)
and D(s) are the following numerator and denominator polynomials, respectively:

N(s) = 700(Kps> + Kps + K1); D(s) = s° + (15 + 700K p)s>
+ (100000 + 700Kp)s + 700K (2.169)

Note that the closed-loop system is of third order. We can write D(s) as a quadratic
factor in s multiplied by a first order polynomial in s, as follows:

D(s) = (s* + 2¢wns + @) (s + p) (2.170)

Note from Eq. (2.116) that the step (or impulse) response of a system is domi-
nated by the poles with the smallest real part magnitudes. If we select the two
poles of the closed-loop system resulting from the roots of (s + 2¢wps + w?)
to be closer to the imaginary axis than the third pole s = —p, the closed-loop
response would be dominated by the quadratic factor in D(s), with (s + p) influ-
encing the closed-loop response by a lesser extent. In such a case, the roots of
(52 + 2t wps + w,21) are called the dominant poles of the closed-loop system. Since
we have already selected the closed-loop damping-ratio as { = 0.707, and natural
frequency as, w, = 316.23 rad/s, we can choose the pole s = — p to be further away
from the imaginary axis in the left-half plane by having p > {w, (i.e. p > 223.57).
Let us take p = 300. Substituting the values of ¢, w,, and p into Eq. (2.170) and
comparing with D(s) given in Eq. (2.169), we get the following values of the
PID compensator constants that would result in the desired closed-loop dynamics:
Ky = 42857.14, Kp = 1.0459, Kp = 191.64, and the compensator’s transfer func-
tion is given by

H(s) = (1.0459s> 4 191.64s + 42857.14) /s (2.171)
With this PID compensator, we get the following closed-loop transfer function:
Y (s)/ Ya(s)

= (732.15s% + 134 140s + 3 x 107)/[(s + 300)(s> + 447.15s + 1 00000)]
2.172)
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Let us check the closed-loop step response as follows:
>>nCL = [732.15 134140 3e7}; dCL = conv([1 300],[1 447.15 1e5]); <enter>

>>[s,t] = stepresp(nCL,dCL,0,0.0005,0.03); plot(t,s) <enter>

The resulting closed-loop step response is plotted in Figure 2.46. Note the settling
time of 0.025 seconds (as compared to 0.7 seconds for the plant), and a complete
lack of high frequency oscillations in the step response, with a zero steady-state |
error. The performance is thus greatly improved by the PID compensation.

Finally, let us determine the gain and phase margins of the PID compensated
closed-loop system as follows:

>>[gmCL, pmCL,wgCL ,wpCL]=margin(GCL) <enter>

gmCL =
Inf

pmCL =
144.8891

wgCL =
NaN

wpCL =
583.6209

Note that the closed-loop gain margin is infinite, and the phase margin is 144.9°
occurring at gain crossover frequency of 583.6 rad/s. Although the phase margin
is no longer infinite as for the plant, it is quite large and adequate. The large
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Figure 2.46 Closed-loop step response of the PID compensated hard-disk read/write head
positioning system
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Figure 2.47 Bode plots of the plant, PID compensator, and closed-loop system for the hard-disk
read/write head

value of the gain crossover frequency indicates a very fast response, which is
evident in Figure 2.46. In short, the PID compensated closed-loop system has a
good combination of performance and stability robustness. The Bode plots of the
PID compensator and the closed-loop system are compared with those of the plant
in Figure 2.47. Note that the PID compensator has a decreasing gain at low frequen-
cies, and an increasing gain at high frequencies. Also, the PID compensator provides
a phase-lag at frequencies below the plant’s natural frequency, and a phase-lead
at higher frequencies. The resulting closed-loop gain and phase plots are much
flatter (compared to the plant). However, due to an increased closed-loop gain at
high frequencies, there is an increased sensitivity (and decreased robustness) with
respect to the high frequency measurement noise, which is undesirable.

The process of finding suitable PID constants Kp, Kp, and K (as illustrated very simply
in Example 2.23) is called PID tuning. Often, PID tuning in trying to achieve desirable
closed-loop characteristics is an iterative procedure A PID (or PI) compensator contains an
integrator (i.e. a pole s = 0) which requires special implementation techniques. Mechani-
cally, a pure integration is possible using a rate-integrating gyroscope — a commonly used
(but expensive) device in aircraft, missile, and spacecraft control systems. Figure 2.48(a)
depicts the schematic diagram of a single degree of freedom rate gyroscope, with gimbal
angle (i.e. rotation of the wheel assembly about the x-axis), 6, as the output and the
angular velocity of the case about the z-axis, €2, as the input. If we neglect the stiffness
and inertia of the gimbal and wheel about the x-axis, we can write the following transfer
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Figure 2.48 (o) Schematic diagram of a single degree of freedom, rate integrating gyroscope with
output, 8(s) and input, 2(s). H is the angular momentum vector with a constant magnitude, H; (b} Active
circuit of an operational amplifier connected as an integrator with input, e; (f) and output, e3(h

function for the rate-integrating gyroscope:
6(s)/2(s) = H/(cs) (2.173)

where H is the constant magnitude of the angular momentum vector, H, of the wheel about
the y-axis, and c is the viscous damping coefficient of the gimbal (i.e. rotary mechanism
about the x-axis) (see Figure 2.48(a)). Equation (2.173) indicates that the gimbal angle
output is the time integral of the input angular velocity of the case.

Modern control systems are relatively inexpensively implemented using either passive
(unpowered) or active (powered) electronic circuits. Figure 2.48(b) shows an active circuit
which uses an operational amplifier to represent a pure integrator. An operational amplifier
has two input voltages, e;(¢) and e,(z), and an output voltage, es(t). In the circuit shown
in Figure 2.48(b), e;(t) = 0, and the equation governing the circuit is the following:

es(t) = —l/(RC)/el(t)dt (2.174)

which implies that the output voltage, es(?), is the time integral of the input voltage,
e1(t), multiplied by the constant —1/(RC). Operational amplifiers can also be used to
represent summing junctions, and other useful devices.

Control systems based upon operational amplifiers (and other active circuits), are gener-
ally more expensive and sensitive to noise than those based on passive circuits. A simpler
alternative to operational amplifier is the approximation of the pure integrator by a passive
circuit, called lag circuit. The chief difficulty in implementing PID compensators is the
ideal differentiator (i.e. the term Kgys in the expression for H(s)). An ideal differentiator
is difficult to set up, and leads to the amplification of any noise present in the input signal.
The noise amplification may interfere with the working of the entire control system. For
these reasons, a pure differentiator is never used practically, but only an approximate
differentiation is implemented using a passive circuit (called a lead circuit). Hence, the

printed on 10/27/2025 5:50 AM via UNI VERSI TY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of -use



96 LINEAR SYSTEMS AND CLASSICAL CONTROL

ideal PID compensator is practically implemented by a combination of lag and lead
circuits (called a lead-lag compensator), which represent approximate integration and
differentiation.

2.12.2 Lag, lead, and lead-lag compensation

Consider a compensator with the following transfer function:
H(s) = (s + 0,)/(s + wp/a) (2.175)

where « is a real constant and w, is a constant frequency. If @ > 1, the compensator is
called a lag compensator, because it always has a negative phase angle, i.e. a phase-lag.
In the limit « — oo, the lag compensator approaches an ideal PI compensator. Hence,
a lag compensator can be used to approximate a PI compensator in practical implemen-
tations. A lag compensator is useful in reducing the steady-state error of type O plants,
and decreasing the gain of the closed-loop system at high frequencies (which is desirable
for reducing the sensitivity to the measurement noise). However, lag compensation slows
down the closed-loop transient response (i.e. increases the settling time). Lag compen-
sation is relatively simple to use, because the passive circuit through which it can be
implemented is quite inexpensive.

In Eq. (2.175), if o < 1, the resulting compensator is called a lead compensator,
because it always has a positive phase angle, i.e. a phase-lead. A lead compensator
is useful for increasing the speed of the closed-loop response (i.e. decreasing the sertling
time), and increasing the phase margin of the closed-loop system, which also results in
smaller overshoots in the transient response. Lead compensation usually requires amplifi-
cation of error signals, which results in an expensive electrical circuit for implementation.
Also, lead compensation increases the gain at high frequencies, which is undesirable due
to increased sensitivity to measurement noise. A lead compensator given by the transfer
function of Eq. (2.175) would decrease the DC gain of the type O open-loop transfer
function, G(s)H(s), which is undesirable as it would increase the steady-state error due
to a step input. So that the DC gain of the type 0 open-loop transfer function, G(s)H(s).
is unchanged with a lead compensator, the lead compensator transfer function is usually
multiplied by the factor 1/w, resulting in

H(s) = (s + w,)/(as + w,) (2.176)

Conversely, if we do not wish to increase the DC gain of G (s) H (s) (which may be infinite
due to poles of G(s) at s = 0) with lag compensation, we would choose a lag compensator
with the transfer function given by Eq. (2.176). Phase lag (or lead) compensation is
traditionally employed in a variety of control applications.

To combine the desirable properties of the lead and lag compensators, sometimes it
is better to use a compensator which has both a phase-lag at low frequencies, and a
phase-lead at high frequencies. Such a compensator is called a lead-lag compensator, and
has the transfer function

H(s) = [(s + @) /(s + oy /a)][(s + @2)/(s/a + w2)] (2.177)
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where o > 1, and w; and w, are constant frequencies. Note that the transfer function
suggests that the lead-lag compensator consists of a lag compensator in series with a lead
compensator. Also, note that the lag part of the transfer function is designed to increase the
DC gain of open-loop system, G(s)H (s). The frequencies, w; and w,, and the constant,
o, must be selected to achieve desired closed-loop characteristics. It is easy to see that in
the limit & — oo, the lead-lag compensator approaches an ideal PID compensator.
Figure 2.49 shows the passive circuits used to implement the lag, lead, and lead-
lag compensators. In each circuit, ¢|(f) and e;(r) are the input and output voltages,
respectively. The transfer function of the lag circuit (Figure 2.49(a)) is expressed as

H(s) = E2(s)/Ei(s) = (1 + RyCs)/[1 + (R, + R»)Cs] (2.178)

Comparing Egs. (2.178) and (2.176), it is clear that w, = 1/(R2C) and o = (R +
R>2)/R;. The lead circuit in Figure 2.49(b) has the transfer function

H(s) = Ex(s)/Ei(s) = Ro(1 + R Cs)/[(R) + R) + R Ry Cs] (2.179)

(a) Ry

Ei(s) R Ex(s)

(b) R
A A
| |
|| %
Ey(s) ¢ Ry Ex(s)
(c) R,

A
| T
|
Ey(s) Gy R, Ex(s)
e, l

r 1

Figure 2,49 (a) Lag circuit with input voltage E;(s) and output voltage Ex(s); (b) Lead circuit with
input voltage E;(s) and output voltage E(s); (c) Lead-lag circuit with input voltage E1(s) and output
voltage E;(s)
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which implies that w, = 1/(R;C) and & = R,/(Ry + R5). Finally, the transfer function

of the lead-lag circuit shown in Figure 2.49(c) is the following:

H(s) = E2(8)/Ei(s) =[(1 + R\ Cys)(1 + RyCas)1/[(1 + R Cy5)(1 + RyCas) + R Cys)
(2.180)
Comparing Eqs. (2.180) and (2.177), you may verify that w; = 1/(R,C), w; = 1/(R,C3),
and o is obtained by factoring the denominator (i.e. solving a quadratic equation) in

Eq. (2.180).

EBSCOhost -

Example 2.24

Consider the roll dynamics of a fighter aircraft with the following transfer function:
@(s)/8(s) = G(s) = 1000/[s(s + 5)] (2.181)

The output, Y (s) = ¢(s), is the roll-angle, while the input, U(s) = 8(s), is the
aileron deflection angle. The maneuverability of an aircraft depends upon the time
taken to achieve a desired roll-angle, (or bank-angle) Y4(s) = ¢q4(s). It is required to
design a closed-loop control system to achieve a unit step desired roll-angle in about
three seconds, with a maximum overshoot less than 2 percent. Since the plant has a
pole at s = 0, it is not asymptotically stable and the steady-state condition would not
be achieved by plant alone, thereby requiring a feedback compensation that would
provide asymptotic stability. Since the plant is of type 1 due to the pole at the origin,
a simple feedback system with H(s) = K (where K is a constant) will achieve
a zero steady-state error to a step desired output. With such a compensator, the
closed-loop characteristic equation would be s2 + 55 + 1000K = 0, and the closed-
loop poles would be s; 5 = —2.5 & (1000K 2 — 6.25)'/2i, with a damping-ratio, { =
0.0791//K, and natural frequency, w, = 31.6228,/K. If we want to achieve a
settling time, T, of 3 seconds, then from Eq. (2.125) we have T; = 4/(gw,), or
cw, = 4/3. The closed-loop system with H(s) = K can give us ¢w, = 0.0791 x
31.6228 = 2.5, or T, = 4/2.5 = 1.6 seconds, which is a smaller settling time than
required. The maximum overshoot requirement of 2 percent of steady-state response,
according to Eq. (2.127) results in the condition Mp = 1.02 = 1 + exp[—¢n /(] —
¢}, or ¢ =0.7797, which requires /K = 0.0791/0.7797 = 0.1014, or K =
0.0103. Hence, we should have K < 0.0103 in order to satisfy both settling time and
maximum overshoot requirements. Let us choose K = 0.01, which gives us a closed-
loop settling time, 7;=1.6 seconds, and maximum overshoot, Mp = 1.0172, or the
maximum percentage overshoot of 1.72 percent. Thus, the performance requirements
are met quite successfully with H(s) = 0.01.

Let us now consider a lag-compensator for this task. Since G(s) is of type 1,
we do not need to increase the DC gain of G(s)H (s) to reduce the steady-state
error to a step input. Hence, we would like to use a lag compensator transfer
function of the form H(s) = (s + w,)/(as + w,), with a > 1, which leaves the
DC gain of G(s)H(s) unchanged. A candidate lag-compensator transfer function
which achieves the desired performance is H(s) = (s + 0.001)/(100s + 0.001),
i.e. wyp = 0.001 rad/s and @ = 100. The closed-loop transfer function is thus the
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following:
$(s)/¢a(s) = 1000(s + 0.001)/(100s> 4+ 500s> + 1000s + 1)  (2.182)

The natural frequencies and damping-ratios of the closed-loop system are the
following:

>>nCL=[0 0 1000 1]; dCL=[100 500 1000 1]; damp(dCL) <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.0010 1.0000 0.0010
-2.4995+1.93591i 0.7906 3.1615
-2.4995-1.93591 0.7906 3.1615

Note that there is a closed-loop pole at s = —0.001. Since there is a closed-loop
zero at the same location, after canceling the pole with the zero at s = —0.001, the
closed-loop transfer function can be written as:

B (s)/da(s) = 10/(s* + 55 + 10) (2.183)

which is the same transfer function as that obtained with H(s) = 0.01! This is an
interesting result, and shows that the lag compensator has resulted in a third order
closed-loop system, which essentially behaves as a second order system due to a
pole-zero cancelation. The performance objectives are met by such a lag compen-
sator, as shown above for H(s) = 0.01.

Figure 2.50 compares the Bode plots of the plant, the lag compensator, and the
closed-loop system. The lag compensator provides a negative phase and a reduction
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B Figure 2.50 Bode plots of the plont, lag compensator, and closed-loop system for the roll
£ control of a fighter aircraft
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100 LINEAR SYSTEMS AND CLASSICAL CONTROL

in gain in the frequencies below aawy (i.e. 0.1 rad/s). Since the closed-loop gain never
crosses the 0 dB line, and the closed-loop phase tends asymptotically to —180°, the
gain and phase margins are infinite for the closed-loop system. Also, note that there
is no change in the slope of gain reduction with frequency (i.e. roll-off) at high
frequencies of the closed-loop system, when compared to that of the plant, which
implies that there is no reduction in the robustness with respect to high-frequency
measurement noise.

Example 2.25

Consider a large chemical plant with the following transfer function:
Y(s)/U(s) = G(s) = 0.025/[(s> + 0.35s + 0.01)(s + 0.33)] (2.184)

where the output, Y (s), is the temperature, and the input, U (s), is the mass flow-rate
of Xylene gas. The natural frequencies of the plant are calculated as follows:

>>num=0.025; den=conv([1 0.33],[1 0.3 0.01}); damp(den) <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.0382 1.0000 0.0382
-0.2618 1.0000 0.2618
-0.3300 1.0000 0.3300

The plant’s response is dominated by the pole, s = —0.0382, which is very much
closer to the imaginary axis than the other two poles. Hence, the plant has a settling
time of approximately T, = 4/0.0382 = 105 seconds. The steady-state error of the
plant is e(00) = 1 — lim;_,¢sY (s) = —6.5758 for a unit step input. It is required
to design a closed-loop control system such that the steady-state error is brought
down to less than +0.15, with a maximum overshoot of 10 percent, and a settling
time less than 20 seconds to a unit step desired output, Y4(s). Consider a lead
compensator with wy = 0.15 rad/s and o = 0.01, which results in a compensator
transfer function, H(s) = (s + 0.15)/(0.01s + 0.15). The closed-loop transfer func-
tion, G(s)H(s)/[1 + G(s)H(s)], is thus

Y (s)/Ya(s) = 0.025(s + 0.15)/(0.015* + 0.1563s* + 0.09559s> + 0.041383s + 0.004245)

(2.185)
The closed-loop poles and natural frequencies are the following:

>>nCL=0.025*(1 0.15]; dCL={0.01 0.1563 0.09559 0.041383 0.004245]; damp
(dCL) <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.1358 1.0000 0.1358
-0.2414+0.38731 0.5289 0.4563
-0.2414-0.38731 0.5289 0.4563

-15.0115 1.0000 15.0115
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Figure 2.51 Step responses of the chemical plant and the closed-loop system with the lead
compensator

Since there is no clearly dominant pole (or conjugate pair of poles), the settling |
time of the closed-loop system is determined by the first three poles, which indi-
cates a dominant third order system. The step response of the closed-loop system is
compared with that of the plant in Figure 2.51, obtained using the M-file stepresp.m.
Note from Figure 2.51 that the closed-loop settling time is about 19 seconds, while
the maximum overshoot is about 8 percent. The closed-loop steady-state error is
calculated to be e(00) = 1 — lim;_,¢ s¥ (s) = 0.1166. Hence, the performance objec-
tives have been met. .
The robustness properties of the closed-loop chemical plant control system are
indicated by a Bode plot of the closed-loop transfer function, which is shown
along with the Bode plots of the plant and the lead compensator in Figure 2.52.
Note that the lead compensator provides a phase lead and a gain increase in the
frequency range awy < @ < wp/a (i.e. 0.0015 < @ < 1500 rad/s). This results in a
speeding-up of the closed-loop response, which is evident in a reduced settling time
and an increased phase crossover frequency. Using the CST command margin, the |
gain and phase margins of the plant are calculated to be 8.349 dB and 33.6°, respec-
tively, with gain and phase crossover frequencies of 0.1957 rad/s and 0.3302 rad/s, |
respectively. The closed-loop system has, however, a gain margin of 32.79 dB and
an infinite phase margin, with a phase crossover frequency of 2.691 rad/s. Hence,
the closed-loop system has a greater robustness to transfer function variations, and
a faster response than the plant. However, due to an increased closed-loop gain
at high frequencies, the roll-off at high frequencies is reduced for the closed-loop
system, when compared to the plant. This implies an increased sensitivity of the |
closed-loop system to the high-frequency measurement noise.
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Figure 2.52 Bode plots of the large chemical plant, lead compensator, and the closed-loop
system

From Examples 2.24 and 2.25, it is clear that while a lag compensator reduces the

closed-loop steady-state error by providing a phase-lag at low frequencies, a lead compen-
sator speeds-up the closed-loop response by providing a phase-lead at high frequencies.
Let us see an application of the lead-lag compensation, which combines the desirable
features of lag and lead compensators.

EBSCOhost -

Example 2.26

In Example 2.25, the use of lead compensation resulted in a faster closed-loop
response of a chemical plant. However, the closed-loop steady-state error with
lead compensation was non-zero. Let us try to reduce the steady-state error, while
speeding up the response, with the help of lead-lag compensation. In Example
2.25, a lead compensator with transfer function, H(s) = (s + 0.15)/(0.01s + 0.15),
produced a closed-loop steady-state error of 0.1166 and a settling time of 19 seconds.
Let us choose the same transfer function for the lead part of the lag-lead compen-
sator, i.e. w, = 0.15 rad/s and 1/a = 0.01 (i.e. @ = 100). The lag part of the lead-lag
compensator would reduce the steady-state error by increasing the DC gain of the
open-loop transfer function, G(s) H(s). Let us therefore modify our design require-
ments to a closed-loop steady-state error of less than 0.002 and a settling time
less than 20 seconds, while accepting a 10 percent maximum overshoot in the step
response. To meet the new design requirements, a lag compensation frequency of
w; = 0.13 rad/s is selected, resulting in the following lead-lag compensator transfer
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function:
H(s) =[(s + 0.15)(s + 0.13)]/[(0.01s + 0.15)(s + 0.0013)] (2.186)
which gives us the following closed-loop transfer function:

Y (s)/Yals)
= (0.025s + 0.007)/(0.01S4 +0.156315> + 0.0957935” + 0.041507s + 0.0075163)

2.187) §
The closed-loop poles, damping, and natural frequencies are as follows: :

>>nCL=[0.025 0.007];dCL=[1e-2 1.5631e-1 9.5793e-2 4.1507e-2 7.5163e-3];
damp (dCL) <enter>

Eigenvalue Damping Freq. (rad/sec)
-1.3483e-001+4.8777e-0021 9.4036e-001 1.4339¢-001
-1.3483e-001-4.8777e-002i 9.4036e-001 1.4339¢-001
-1.7514e-001+3.5707e-0011 4.4037e-001 3.9770e-001
-1.7514¢-001-3.5707e-0011 4.4037e-001 3.9770e-001
-1.5011e+001 1.0000e+000 1.5011e+001

The first four poles, roughly located the same distance from the imaginary axis,
are the dominant poles of the closed-loop system. The DC gain of the closed-loop
system indicates the steady-state value of the step response, and is calculated using
the MATLAB (CST) command dcgain as follows:

>>GCL=tf(nCL,dCL); dcgain(GCL) <enter>=
ans =

0.9987

Hence, the closed-loop steady-state error is brought down to 1 — 0.9987 = 0.0013,
which is acceptable. The closed-loop step response is plotted in Figure 2.53 for three
different values of the lag frequency, w;. For w; = 0.13 rad/s (used in the above
calculations), the closed-loop response has a settling time of about 16 seconds,
and a maximum overshoot of about 30 percent, which is unacceptable. Figure 2.53
shows that the maximum percentage overshoot can be reduced by decreasing w;.
For w; = 0.05 rad/s, the maximum percentage overshoot is about 10 percent, and
the settling time is about 13 seconds. However, decreasing w; below 0.05 rad/s |
results in an increase in the settling time, as is evident from the step response for |
wy = 0.03 rad/s which has a maximum overshoot of about S percent, but a settling
time of about 22 seconds. The steady-state error is unaffected by changing w;. We |
select w; = 0.05 rad/s, which gives a fast response and an acceptable maximum
overshoot.

The Bode plots of the plant, the lead-lag compensator with w, = 0.15 rad/s, w; =
0.05 rad/s, @ = 100, and the resulting closed-loop system are shown in Figure 2.54. |
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Figure 2.53 Closed-loop step response of the chemical plant with a lead-lag compensator for
various values of the lag frequency, w;
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Figure 2.54 Bode plots of the lorge chemical plant, the lead-lag compensator, and the

closed-loop system

Comparing Figure 2.54 with Figure 2.52, the phase-lag and decreasing compensator
gain below 0.1 rad/s, and phase-lag and increasing compensator gain above 0.1 rad/s
are evident for the lead-lag compensator. The high-frequency closed-loop behavior
is largely unaffected, when compared to the lead compensation in Figure 2.52. The
closed-loop gain and phase margins are computed by the command margin to be
38.9 dB and 104.5°, respectively, with gain and phase crossover frequencies of
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