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It was mentioned in Chapter 1 that we need differential equations to describe the behavior
of a system, and that the mathematical nature of the governing differential equations is
another way of classifying control systems. In a large class of engineering applications,
the governing differential equations can be assumed to be linear. The concept of linearity
is one of the most important assumptions often employed in studying control systems.
However, the following questions naturally arise: what is this assumption and how valid
is it anyway? To answer these questions, let us consider lumped parameter systems
for simplicity, even though all the arguments presented below are equally applicable
to distributed systems. (Recall that lumped parameter systems are those systems whose
behavior can be described by ordinary differential equations.) Furthermore, we shall
confine our attention (until Section 2.13) to single-input, single-output (SISO) systems.
For a general lumped parameter, SISO system (Figure 2.1) with input u(t} and output
y ( t ) , the governing ordinary differential equation can be written as

M (0 , um-(t), . . . , « ( r ) , i«(0, 0
(2.1)

where y(k} denotes the &th derivative of y(t) with respect to time, t, e.g. v(n) = dny/dt",
y(n~l) = d"~ly/dt"~l, and u(k) denotes the fcth time derivative of u(t). This notation for
derivatives of a function will be used throughout the book. In Eq. (2.1), /() denotes a
function of all the time derivatives of y ( t ) of order (n — 1) and less, as well as the time
derivatives of u(t) of order m and less, and time, t. For most systems m < n, and such
systems are said to be proper.

Since n is the order of the highest time derivative of y(f) in Eq. (2.1), the
system is said to be of order n. To determine the output y ( t ) , Eq. (2.1) must be
somehow integrated in time, with u(t) known and for specific initial conditions
j(0), j(1)(0), .y(2)(0), . . . , y("-l)(G). Suppose we are capable of solving Eq. (2.1), given
any time varying input, u(t), and the initial conditions. For simplicity, let us assume that
the initial conditions are zero, and we apply an input, u(t), which is a linear combination
of two different inputs, u\(t), and U2(t), given by

U(t) = C\U\(t) +C2«2(0 (2.2)
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14 UNEAR SYSTEMS AND CLASSICAL CONTROL

Input u(t) Lumped parameter
system

Output y(t)

Figure 2.1 A general lumped parameter system with input, u(f), and output, y(f)

where c\ and c2 are constants. If the resulting output, y(t ), can be written as

c2y2(t) (2.3)

where y \ ( t ) is the output when u\(t) is the input, and y2(t) is the output when 1*2(1) is the
input, then the system is said to be linear, otherwise it is called nonlinear. In short, a linear
system is said to obey the superposition principle, which states that the output of a linear
system to an input consisting of linear combination of two different inputs (Eq. (2.2))
can be obtained by linearly superposing the outputs to the respective inputs (Eq. (2.3)).
(The superposition principle is also applicable for non-zero initial conditions, if the initial
conditions on y(t ) and its time derivatives are linear combinations of the initial conditions
on y\(t) and y2(t), and their corresponding time derivatives, with the constants c\ and
c2.) Since linearity is a mathematical property of the governing differential equations,
it is possible to say merely by inspecting the differential equation whether a system is
linear. If the function /() in Eq. (2.1) contains no powers (other than one) of y(t) and
its derivatives, or the mixed products of y ( t ) , its derivatives, and u(t) and its derivatives,
or transcendental functions of j(0 and u(t), then the system will obey the superposition
principle, and its linear differential equation can be written as

any
(n)(t) + an-iy

(n-])(t) + • • • + aiy™(t) + a*y(t)

(2-4)

Note that even though the coefficients OQ, a\ , . . . , an and bo,b\ , . . . ,bm (called the
parameters of a system) in Eq. (2.4) may be varying with time, the system given by
Eq. (2.4) is still linear. A system with time-varying parameters is called a time-varying
system, while a system whose parameters are constant with time is called time-invariant
system. In the present chapter, we will be dealing only with linear, time-invariant systems.
It is possible to express Eq. (2.4) as a set of lower order differential equations, whose
individual orders add up to n. Hence, the order of a system is the sum of orders of all
the differential equations needed to describe its behavior.

Example 2.1

For an electrical network shown in Figure 2.2, the governing differential equations
are the following:

3) + e(t)/(R\C\) (2.5a)

v2
l\t) = ui(0/(C2/?3) - (W2(0/C2)(1//J2 + l/*3) + e(t)/(R2C2) (2.5b)
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HOW VALID IS THE ASSUMPTION OF LINEARITY? 15

e(t)

Figure 2.2 Electrical network for Example 2.1

where v\(t) and i>2(0 are the voltages of the two capacitors, C\ and €2, e(t) is the
applied voltage, and R\, R2, and R^ are the three resistances as shown.

On inspection of Eq. (2.5), we can see that the system is described by two first
order, ordinary differential equations. Therefore, the system is of second order.
Upon the substitution of Eq. (2.5b) into Eq. (2.5a), and by eliminating v2, we get
the following second order differential equation:

1 + (Ci/C2)(R3/R2 +

l/R3)(R3/Ri + 1) - l/R3]vi(t)

l/R3)e(t)/C2 + (R3/Ri) (2.6)

Assuming y(t) = v\(t) and u(t) — e(t), and comparing Eq. (2.6) with Eq. (2.4), we
can see that there are no higher powers, transcendental functions, or mixed products
of the output, input, and their time derivatives. Hence, the system is linear.

Suppose we do not have an input, u(t), applied to the system in Figure 2.1.
Such a system is called an unforced system. Substituting u(t) = u ( l ) ( t ) = u(2)(t) —
. . . = u(m}(t) = 0 into Eq. (2.1) we can obtain the following governing differential
equation for the unforced system:

yW(t) = f ( y ( n ~ l ) ( t ) , y("-2)(t), ..., y ( 1 ) ( / ) , v(/), 0, 0, . . . , 0, 0, t) (2.7)

In general, the solution, y ( t ) , to Eq. (2.7) for a given set of initial conditions is
a function of time. However, there may also exist special solutions to Eq. (2.7)
which are constant. Such constant solutions for an unforced system are called its
equilibrium points, because the system continues to be at rest when it is already
at such points. A large majority of control systems are designed for keeping a
plant at one of its equilibrium points, such as the cruise-control system of a car
and the autopilot of an airplane or missile, which keep the vehicle moving at a
constant velocity. When a control system is designed for maintaining the plant at
an equilibrium point, then only small deviations from the equilibrium point need to
be considered for evaluating the performance of such a control system. Under such
circumstances, the time behavior of the plant and the resulting control system can
generally be assumed to be governed by linear differential equations, even though
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16 LINEAR SYSTEMS AND CLASSICAL CONTROL

the governing differential equations of the plant and the control system may be
nonlinear. The following examples demonstrate how a nonlinear system can be
linearized near its equilibrium points. Also included is an example which illustrates
that such a linearization may not always be possible.

Example 2.2

Consider a simple pendulum (Figure 2.3) consisting of a point mass, m, suspended
from hinge at point O by a rigid massless link of length L. The equation of motion
of the simple pendulum in the absence of an externally applied torque about point
O in terms of the angular displacement, 0(t), can be written as

L0(2)(» + g.sin(6>(/))=0 (2.8)

This governing equation indicates a second-order system. Due to the presence of
sin(#) - a transcendental function of 6 - Eq. (2.8) is nonlinear. From our everyday
experience with a simple pendulum, it is clear that it can be brought to rest at only
two positions, namely 0 = 0 and 9 = n rad. (180°). Therefore, these two positions
are the equilibrium points of the system given by Eq. (2.8). Let us examine the
behavior of the system near each of these equilibrium points.

Since the only nonlinear term in Eq. (2.8) is sin(0), if we can show that sin(0) can
be approximated by a linear term, then Eq. (2.8) can be linearized. Expanding sin(0)
about the equilibrium point 0 = 0, we get the following Taylor's series expansion:

sin(6>) =8- 03/3! + 05/5l - B1 /1\ + • • • (2.9)

If we assume that motion of the pendulum about 0=0 consists of small angular
displacements (say 0 < 10°), then sin(0) ^ 0, and Eq. (2.8) becomes

0 (2.10)

e = o

Figure 2.3 A simple pendulum of length L and mass m
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HOW VALID IS THE ASSUMPTION OF LINEARITY? 17

Similarly, expanding sin(#) about the other equilibrium point, 0 = n, by assuming
small angular displacement, 0, such that B — n — 0, and noting that sin(0) =
— sin(0) % —0, we can write Eq. (2.8) as

(2.11)

We can see that both Eqs. (2.10) and (2.11) are linear. Hence, the nonlinear
system given by Eq. (2.8) has been linearized about both of its equilibrium points.
Second order linear ordinary differential equations (especially the homogeneous ones
like Eqs. (2.10) and (2.11)) can be be solved analytically. It is well known (and you
may verify) that the solution to Eq. (2.10) is of the form 9(t) = A. sin(f (g/L)1/2 +
B.cos(t(g/L)1/2), where the constants A and B are determined from the initial
conditions, $(0) and <9(1)(0). This solution implies that 9(t) oscillates about the
equilibrium point 0=0. However, the solution to Eq. (2.11) is of the form 0(0 =
C. exp(?(g/L)'/2), where C is a constant, which indicates an exponentially increasing
0(0 if </>(0) ^ 0. (This nature of the equilibrium point at 9 = JT can be experimen-
tally verified by anybody trying to stand on one's head for any length of time!)
The comparison of the solutions to the linearized governing equations close to the
equilibrium points (Figure 2.4) brings us to an important property of an equilibrium
point, called stability.

2.5

2

1.5

1

0.5

0

-0.5

—1

/Solution to Eq. (2.11) with 0(0)

Solution to Eq. (2.10) with 6(0) = 0.2

0.2 0.4 0.6
Time (s)

0.8

Figure 2.4 Solutions to the governing differential equation linearized about the two equilibrium
points (9 = 0 and 9 = rt)

Stability is defined as the ability of a system to approach one of its equilibrium points
once displaced from it. We will discuss stability in detail later. Here, suffice it to say
that the pendulum is stable about the equilibrium point 9 = 0, but unstable about the
equilibrium point 9 = n. While Example 2.2 showed how a nonlinear system can be

 EBSCOhost - printed on 10/27/2025 5:46 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



18 LINEAR SYSTEMS AND CLASSICAL CONTROL

linearized close to its equilibrium points, the following example illustrates how a nonlinear
system's description can be transformed into a linear system description through a clever
change of coordinates.

Example 2.3

Consider a satellite of mass m in an orbit about a planet of mass M (Figure 2.5).
The distance of the satellite from the center of the planet is denoted r(r), while its
orientation with respect to the planet's equatorial plane is indicated by the angle
0(t), as shown. Assuming there are no gravitational anomalies that cause a departure
from Newton's inverse-square law of gravitation, the governing equation of motion
of the satellite can be written as

r(2)(0 - h2/r(t)3 + k2/r(t)2 = 0 (2.12)

where h is the constant angular momentum, given by

h = r(f)20(1)(f) = constant (2.13)

and k — GM, with G being the universal gravitational constant.
Equation (2.12) represents a nonlinear, second order system. However, since we

are usually interested in the path (or the shape of the orbit) of the satellite, given
by r(0), rather than its distance from the planet's center as a function of time, r(t),
we can transform Eq. (2.12) to the following linear differential equation by using
the co-ordinate transformation u(9) = l/r(0):

u(2\e) + u(0)-k2/h2 = 0 (2.14)

Being a linear, second order ordinary differential equation (similar to Eq. (2.10)),
Eq. (2.14) is easily solved for w(0), and the solution transformed back to r(0)

Figure 2.5 A satellite of mass m in orbit around a planet of mass M at a distance r(f) from the
planefs center, and azimuth angle 6(t) from the equatorial plane
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HOW VALID IS THE ASSUMPTION OF LINEARITY? 19

given by

r(6») = (h2/k A(h2 / k2) cos((9 - B)] (2.15)

where the constants A and B are determined from r(6} and r ( l ) ( 9 ) specified at given
values of 9. Such specifications are called boundary conditions, because they refer
to points in space, as opposed to initial conditions when quantities at given instants
of time are specified. Equation (2.15) can represent a circle, an ellipse, a parabola,
or a hyperbola, depending upon the magnitude of A(h2/k2) (called the eccentricity
of the orbit).

Note that we could also have linearized Eq. (2.12) about one of its equilibrium
points, as we did in Example 2.2. One such equilibrium point is given by r(t) =
constant, which represents a circular orbit. Many practical orbit control applications
consist of minimizing deviations from a given circular orbit using rocket thrusters
to provide radial acceleration (i.e. acceleration along the line joining the satellite
and the planet) as an input, u(t), which is based upon the measured deviation from
the circular path fed back to an onboard controller, as shown in Figure 2.6. In such
a case, the governing differential equation is no longer homogeneous as Eq. (2.12),
but has a non-homogeneous forcing term on the right-hand side given by

r ( 2 )(f) - h2/r(t)3 + k2/r(t)2 = u(t] (2.16)

Since the deviations from a given circular orbit are usually small, Eq. (2.16) can be
suitably linearized about the equilibrium point r(t) = C. (This linearization is left
as an exercise for you at the end of the chapter.)

Desired
circular

orbit
r(t) = Cf

_ '

Measured
deviation
r(t) - C

i

Orbit
controller

Thruster
radial

acceleration
u(t)

Acti
ort

Satellite
r(t

Figure 2.6 On orbit feedback control system for maintaining a circular orbit of a satellite
around a planet

Examples 2.2 and 2.3 illustrated how a nonlinear system can be linearized for practical
control applications. However, as pointed out earlier, it is not always possible to do so.
If a nonlinear system has to be moved from one equilibrium point to another (such as
changing the speed or altitude of a cruising airplane), the assumption of linearity that is
possible in the close neighborhood of each equilibrium point disappears as we cross the
nonlinear region between the equilibrium points. Also, if the motion of a nonlinear system
consists of large deviations from an equilibrium point, again the concept of linearity is not
valid. Lastly, the characteristics of a nonlinear system may be such that it does not have
any equilibrium point about which it can be linearized. The following missile guidance
example illustrates such a nonlinear system.
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20 LINEAR SYSTEMS AND CLASSICAL CONTROL

Example 2.4

Radar or laser-guided missiles used in modern warfare employ a special guidance
scheme which aims at flying the missile along a radar or laser beam that is illumi-
nating a moving target. The guidance strategy is such that a correcting command
signal (input) is provided to the missile if its flight path deviates from the moving
beam. For simplicity, let us assume that both the missile and the target are moving
in the same plane (Figure 2.7). Although the distance from the beam source to the
target, Ri(t), is not known, it is assumed that the angles made by the missile and
the target with respect to the beam source, #M(?) and #r(0, are available for precise
measurement. In addition, the distance of the missile from the beam source, /?M(0,
is also known at each instant.

A guidance law provides the following normal acceleration command signal,
ac(t), to the missile

(2.17)

As the missile is usually faster than the target, if the angular deviation
#M(O] is made small enough, the missile will intercept the target. The feedback
guidance scheme of Eq. (2.17) is called beam-rider guidance, and is shown in
Figure 2.8.

Altitude "
aT(0

Radar
or
laser ,/
beam/ awc(0

* Target

ac(0

Missile

Beam
source

Horizon

Figure 2.7 Beam guided missile follows a beam that continuously illuminates a moving target
located at distance Rf(f) from the beam source
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Figure 2.8 Beam-rider closed-loop guidance for a missile
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HOW VALID IS THE ASSUMPTION OF LINEARITY? 21

The beam-rider guidance can be significantly improved in performance if we can
measure the angular velocity, 0| \t), and the angular acceleration, 0£ (?), of the
target. Then the beam's normal acceleration can be determined from the following
equation:

In such a case, along with ac(t) given by Eq. (2.17), an additional command
signal (input) can be provided to the missile in the form of missile's acceleration
perpendicular to the beam, a^c(t), given by

Since the final objective is to make the missile intercept the target, it must be
id ) , i(2),ensured that 0^(0 = 0r';(0 and 0^(0 = 9?\t), even though [0j(0 - 0M(01 may

not be exactly zero. (To understand this philosophy, remember how we catch up
with a friend's car so that we can chat with her. We accelerate (or decelerate) until
our velocity (and acceleration) become identical with our friend's car, then we can
talk with her; although the two cars are abreast, they are not exactly in the same
position.) Hence, the following command signal for missile's normal acceleration
perpendicular to the beam must be provided:

The guidance law given by Eq. (2.20) is called command line-of-sight guidance,
and its implementation along with the beam-rider guidance is shown in the block
diagram of Figure 2.9. It can be seen in Figure 2.9 that while 0r(0 is being fed
back, the angular velocity and acceleration of the target, 0| \t), and 0j \t), respec-
tively, are being fed forward to the controller. Hence, similar to the control system
of Figure 1.4, additional information about the target is being provided by a feedfor-
ward loop to improve the closed-loop performance of the missile guidance system.

.(2)

Acceleration
commands
ac(0, aMc(f)

Missile's
angular
position

Target's
angular

position,

Figure 2.9 Beam-rider and command line-of-sight guidance for a missile

Note that both Eq. (2.17) and Eq. (2.20) are nonlinear in nature, and generally cannot
be linearized about an equilibrium point. This example shows that the concept of linearity
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