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22 LINEAR SYSTEMS AND CLASSICAL CONTROL

is not always valid. For more information on missile guidance strategies, you may refer
to the excellent book by Zarchan [1].

2.2 Singularity Functions

It was mentioned briefly in Chapter 1 that some peculiar, well known input functions are
generally applied to test the behavior of an unknown system. A set of such test functions
is called singularity functions. The singularity functions are important because they can be
used as building blocks to construct any arbitrary input function and, by the superposition
principle (Eq. (2.3)), the response of a linear system to any arbitrary input can be easily
obtained as the linear superposition of responses to singularity functions. The two distinct
singularity functions commonly used for determining an unknown system’s behavior are
the unit impulse and unit step functions. A common property of these functions is that
they are continuous in time, except at a given time. Another interesting fact about the
singularity functions is that they can be derived from each other by differentiation or
integration in time.

The unit impulse function (also called the Dirac delta function), 5(t — a), is seen in
Figure 2.10 to be a very large spike occurring for a very small duration, applied at time
t = a, such that the total area under the curve (shaded region) is unity. A unit impuise
function can be multiplied by a constant to give a general impulse function (whose area
under the curve is not unity). From this description, we recognize an impulse function to
be the force one feels when hit by a car — and in all other kinds of impacts.

The height of the rectangular pulse in Figure 2.10 is 1/, whereas its width is £ seconds,
¢ being a very small number. In the limit ¢ — 0, the unit impulse function tends to infinity
(i.e. 8(t —a) — o00). The unit impulse function shown in Figure 2.10 is an idealization
of the actual impulse whose shape is not rectangular, because it takes some time to reach
the maximum value, unlike the unit impulse function (which becomes very large instan-
taneously). Mathematically, the unit impulse function can be described by the following
equations:

(t—a)=0, fort#a 2.21)

/ §(t —a)dt =1 (2.22)

8(t-a) .
_oia(l—a)dt=1

1/e
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Figure 2.10 The unit impulse function; a pulse of infinitesimal duration (¢) and very large magni-
tude {1/¢) such that its total area is unity
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Note that (¢t —a) is discontinuous at ¢ = a. Furthermore, since the unit impulse
function is non-zero only in the period ¢ <t < a + &, we can also express Egs. (2.21)
and (2.22) by

a+te
/ St —a)yder =1 (2.23)

a

However, when utilizing the unit impulse function for control applications, Eq. (2.22) is
much more useful. In fact, if §(+ — a) appears inside an integral with infinite integra-
tion limits, then such an integral is very easily carried out with the use of Eqgs. (2.21)
and (2.22). For example, if f(¢) is a continuous function, then the well known Mean
Value Theorem of integral calculus can be applied to show that

T T
FO8G —aydi = fa) | 84 —a)di = f(a) (2.24)
T

T

where T < a < T. Equation (2.24) indicates an important property of the unit impulse
function called the sampling property, which allows the time integral of any continuous
function f(r) weighted by §(z — a) to be simply equal to the function f(¢) evaluated at
t = a, provided the limits of integration bracket the time ¢t = a.

The unit step function, u;(¢t — a), is shown in Figure 2.11 to be a jump of unit magni-
tude at time ¢ = a. It is aptly named, because it resembles a step of a staircase. Like the
unit impulse function, the unit step function is also a mathematical idealization, because
it is impossible to apply a non-zero input instantaneously. Mathematically, the unit step
function can be defined as follows:

0 fort<ua

u(t —a) = L for t > a (2.25)
It is clear that uy(t — a) is discontinuous at t = a, and its time derivative at t = q is
infinite. Recalling from Figure 2.10 that in the limit ¢ — 0, the unit impulse function
tends to infinity (i.e. 6(r — a) — 00), we can express the unit impulse function, §(r — a),
as the time derivative of the unit step function, u,(t — a), at time ¢t = a. Also, since the
time derivative of u;(t — a) is zero at all times, except at 1 = a (where it is infinite), we
can write

8(t —a) =dus(t —a)/dt (2.26)

ug(t-a)

0 a >t

Figure 2.11 The unit step function, u,(t — a); a jump of unit magnitude at time t = a
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r(t- a)

0 a t

Figure 2.12 The unit ramp function; a ramp of unit slope applied at fime t = a

Or, conversely, the unit step function is the time integral of the unit impulse function,
given by

13
u(t —a) = / §(t —a)dr 2.27)

A useful function related to the unit step function is the unit ramp function, r(t — a),
which is seen in Figure 2.12 to be a ramp of unit slope applied at time t = a. It is like an
upslope of 45° angle you suddenly encounter while driving down a perfectly flat highway
at t = a. Mathematically, r(t — a) is given by

0 fort <a

(t —a) fort>a (2.28)

r(t—a)=[

Note that r(t — a) is continuous everywhere, but its slope is discontinuous at t = a.
Comparing Eq. (2.28) with Eq. (2.25), it is clear that

r¢ —a)= (0 —a)u;(t —a) (2.29)

or .
rit —a)= / us;(t —a)dr (2.30)

—oC

Thus, the unit ramp function is the time integral of the unit step function, or conversely,
the unit step function is the time derivative of the unit ramp function, given by

us(t —a) =dr(t —a)/dt (2.31)

The basic singularity functions (unit impulse and step), and their relatives (unit ramp
function) can be used to synthesize more complicated functions, as illustrated by the
following examples.

Example 2.5

The rectangular pulse function, f(t), shown in Figure 2.13, can be expressed by
subtracting one step function from another as

f@) = folus(t +T/2) —us(t = T/2)] (2.32)
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Figure 2.13 The rectangular pulse function of magnitude £,

Example 2.6

The decaying exponential function, f(t) (Figure 2.14) is zero before ¢t =0, and
decays exponentially from a magnitude of f, at r = 0. It can be expressed by
multiplying the unit step function with f, and a decaying exponential term, given by

f®) = foe ' u ) (2.33)

f(t)

f(ty =0 for t<0 fity=f,e " fort>0

~—

~t 0 t

Figure 2.14 The decaying exponential function of magnitude £,

Example 2.7

The sawtooth pulse function, f(t), shown in Figure 2.15, can be expressed in terms
of the unit step and unit ramp functions as follows:

F@) = fo/Dlr@) —rt =T)] = fou; ¢t = T) (2.34)

fit)
fo Slope = f,/T

0 T t

Figure 2.15 The sawtooth pulse of height £, and width T

After going through Examples 2.5-2.7, and with a little practice, you can decide merely
by looking at a given function how to synthesize it using the singularity functions. The
unit impulse function has a special place among the singularity functions, because it can be
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