
26 LINEAR SYSTEMS AND CLASSICAL CONTROL

f(r)-
Area = f (r)Ar

Figure 2.16 Any arbitrary function, f(t), can be represented by summing up unit impulse functions,
8(t — T) applied at t = r and multiplied by the area f(r) Ar for all values of r from —oo to t

used to describe any arbitrary shaped function as a sum of suitably scaled unit impulses,
S(t — a), applied at appropriate time, t = a. This fact is illustrated in Figure 2.16, where
the function f ( t ) is represented by

- r) (2.35)

or, in the limit Ar —>• 0,

=/: f(r)S(t-r)dr (2.36)

Equation (2.36) is one of the most important equations of modern control theory,
because it lets us evaluate the response of a linear system to any arbitrary input, /(/), by
the use of the superposition principle. We will see how this is done when we discuss the
response to singularity functions in Section 2.5. While the singularity functions and their
relatives are useful as test inputs for studying the behavior of control systems, we can also
apply some well known continuous time functions as inputs to a control system. Examples
of continuous time test functions are the harmonic functions sin(o>f) and cos(<wf)» where
o) is a frequency, called the excitation frequency. As an alternative to singularity inputs
(which are often difficult to apply in practical cases), measuring the output of a linear
system to harmonic inputs gives essential information about the system's behavior, which
can be used to construct a model of the system that will be useful in designing a control
system. We shall study next how such a model can be obtained.

2.3 Frequency Response

Frequency response is related to the steady-state response of a system when a harmonic
junction is applied as the input. Recall from Section 1.2 that steady-state response is the
linear system's output after the transient response has decayed to zero. Of course, the
requirement that the transient response should have decayed to zero after some time calls
for the linear system to be stable. (An unstable system will have a transient response
shooting to infinite magnitudes, irrespective of what input is applied.) The steady-state
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FREQUENCY RESPONSE 27

response of a linear system is generally of the same shape as that of the applied input,
e.g. a step input applied to a linear, stable system yields a steady-state output which
is also a step function. Similarly, the steady-state response of a linear, stable system
to a harmonic input is also harmonic. Studying a linear system's characteristics based
upon the steady-state response to harmonic inputs constitutes a range of classical control
methods called the frequency response methods. Such methods formed the backbone of
the classical control theory developed between 1 900-60, because the modern state-space
methods (to be discussed in Chapter 3) were unavailable then to give the response of
a linear system to any arbitrary input directly in the time domain (i.e. as a function of
time). Modern control techniques still employ frequency response methods to shed light
on some important characteristics of an unknown control system, such as the robustness of
multi-variable (i.e. multi-input, multi-output) systems. For these reasons, we will discuss
frequency response methods here.

A simple choice of the harmonic input, u(t\ can be

u(t) = u()cos(cot) or u(t) = u0sin(a)t) (2.37)

where u0 is the constant amplitude and CD is the frequency of excitation (sometimes called
the driving frequency). If we choose to write the input (and output) of a linear system
as complex functions, the governing differential equation can be replaced by complex
algebraic equations. This is an advantage, because complex algebra is easier to deal with
than differential equations. Furthermore, there is a vast factory of analytical machinery
for dealing with complex functions, as we will sample later in this chapter. For these
powerful reasons, let us express the harmonic input in the complex space as

u(t) = u(!Q
lwt (2.38)

where / — \/^T (a purely imaginary quantity), and

e/a" = cos(a>f ) 4- i sin (art) (2.39)

Equation (2.39) is a complex representation in which cos(a>t ) is called the real part of
Ql(at and sin(cot) is called the imaginary part of &laj! (because it is multiplied by the
imaginary number i). The complex space representation of the harmonic input given by
Eq. (2.38) is shown in Figure 2.17. The two axes of the complex plane are called the real

Imaginary
axis

u0 cos(o>0 Real
axis

Figure 2.17 Complex space representation of a harmonic input, u(0
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28 _ LINEAR SYSTEMS AND CLASSICAL CONTROL _

and imaginary axis, respectively, as shown. Hence, complex space representation of a
harmonic function is a device of representing both the possibilities of a simple harmonic
input, namely MOCOS(<W/) and M0sin(<wf), respectively, in one expression. By obtaining
a steady-state response to the complex input given by Eq. (2.38), we will be obtaining
simultaneously the steady-state responses of a linear, stable system to MOCOS(O>/) and

When you studied solution to ordinary differential equations, you learnt that their solu-
tion consists of two parts - the complimentary solution (or the solution to the unforced
differential equation (Eq. (2.7)), and a particular solution which depends upon the input.
While the transient response of a linear, stable system is largely described by the compli-
mentary solution, the steady-state response is the same as the particular solution at large
times. The particular solution is of the same form as the input, and must by itself
satisfy the differential equation. Hence, you can verify that the steady-state responses to
u(t) = u0cos(a)t) and u(t) = M0sin(<wr), are given by vJ5(r) = y0cos(a>t) and yss(t) =
y0 sin(<wr), respectively (where y0 is the amplitude of the resulting harmonic, steady-state
output, yss(t)} by plugging the corresponding expressions of u(t) and yjs(0 into Eq. (2.4),
which represents a general linear system. You will see that the equation is satisfied in
each case. In the complex space, we can write the steady-state response to harmonic input
as follows:

(2.40)

Here, the steady-state response amplitude, v0, is a complex function of the frequency
of excitation, a). We will shortly see the implications of a complex response amplitude.
Consider a linear, lumped parameter, control system governed by Eq. (2.4) which can be
re-written as follows

D}{yss(t)} = D2{u(t)} (2.41)

where £>i{-} and D2{-} are differential operators (i.e. they operate on the steady-state
output, y55(0, and the input, u(t}, respectively, by differentiating them), given by

(2.42)

and
D2{-} = bmdm/dtm + bm-idm-l/dtm-* + ••• + bid/dt + bo (2.43)

Then noting that

' = [(ia>Yand
n/dtn + (ia>)n-lan-id"-} /dtn~l +••• + (ico)aid/dt

(2.44)
and

'wf) = [(iw}mbmdm/dtm + (ia>r~lbm-idm-*/dtm-1 +••• + (ia>)b\d/dt + b0]eia>l

(2.45)
we can write, using Eq. (2.41),

y0(ia)) = G(ia>)u0 (2.46)
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FREQUENCY RESPONSE 29

where G(ia>) is called the frequency response of the system, and is given by

G(ia>) = [(ico)mbm + (/W~X-i + • • • + (iw)fci + b0]/[(ia))nan

+ (ic0)n-lan-i +••• + (ico)a{ + a(>] (2,47)

Needless to say, the frequency response G(ia>) is also a complex quantity, consisting of
both real and imaginary parts. Equations (2.46) and (2.47) describe how the steady-state
output of a linear system is related to its input through the frequency response, G(ico).
Instead of the real and imaginary parts, an alternative description of a complex quantity is
in terms of its magnitude and the phase, which can be thought of as a vector's length and
direction, respectively. Representation of a complex quantity as a vector in the complex
space is called a phasor. The length of the phasor in the complex space is called its
magnitude, while the angle made by the phasor with the real axis is called its phase. The
magnitude of a phasor represents the amplitude of a harmonic function, while the phase
determines the value of the function at t = 0. The phasor description of the steady-state
output amplitude is given by

y0(ia>) = \ya(ia>)\eia(ta> (2.48)

where \y0(ico)\ is the magnitude and ct(a)) is the phase of y()(ico). It is easy to see that

\y0(ia))\ = [real {y0(ico)}2 + imag {y0(ia))}2]l/2;

a(co} = tan"1 [imag {y«(M}/real [y0(ia))}] (2.49)

where real{-} and imag{-} denote the real and imaginary parts of a complex number. We
can also express the frequency response, G(ia>), in terms of its magnitude, |G (/&>)) , and
phase, 0(o>), as follows:

|G(/a>)|e'0M (2.50)

Substituting Eqs. (2.48) and (2.50) into Eq. (2.46), it is clear that \y0(ia))\ = \G(ia))\u(/

and a(a>) = <^>(co). Hence, the steady-state response of a linear system excited by a
harmonic input of amplitude u0 and zero phase (u0 = wf,e'°) is given through Eq. (2.40) by

yss(t) = y0(ia>)eia>t = \G(io))\u0e
i<t>(w)Qi(at = \G(ico)\u0e

i[ct>t+ct>{w)] (2.51)

Thus, the steady-state response to a zero phase harmonic input acquires its phase from the
frequency response, which is purely a characteristic of the linear system. You can easily
show that if the harmonic input has a non-zero phase, then the phase of the steady-state
response is the sum of the input phase and the phase of the frequency response, 0(co). The
phasor representation of the steady-state response amplitude is depicted in Figure 2.18.

From Eq. (2.51), it is clear that the steady-state response is governed by the amplitude
of the harmonic input, u0, and magnitude and phase of the frequency response, G (/&>),
which represent the characteristics of the system, and are functions of the frequency of
excitation. If we excite the system at various frequencies, and measure the magnitude and
phase of the steady-state response, we could obtain G(ito) using Eq. (2.51), and conse-
quently, crucial information about the system's characteristics (such as the coefficients a/,
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30 LINEAR SYSTEMS AND CLASSICAL CONTROL

Imaginary ,,
axis

Figure 2.18 Phaser representations of a harmonic input, u(f), with zero phase and amplitude UQ,
and steady-state response amplitude, yo(/<w), °fa linear system with frequency response, G(ia>)

and bk, in Eq. (2.47)). In general, we would require G(ico) at as many frequencies as are
the number of unknowns, ak and bk, in Eq. (2.47). Conversely, if we know a system's
parameters, we can study some of its properties, such as stability and robustness, using
frequency response plots (as discussed later in this chapter). Therefore, plots of magnitude
and phase of G(/w) with frequency, CD, serve as important tools in the analysis and design
of control systems. Alternatively, we could derive the same information as obtained from
the magnitude and phase plots of G(i(o) from the path traced by the tip of the frequency
response phasor in the complex space as the frequency of excitation is varied. Such a
plot of G(ico) in the complex space is called a polar plot (since it represents G(ico) in
terms of the polar coordinates, \G(ico)\ and 0(<w)). Polar plots have an advantage over
the frequency plots of magnitude and phase in that both magnitude and phase can be
seen in one (rather than two) plots. Referring to Figure 2.18, it is easily seen that a phase
(j)(u>} = 0° corresponds to the real part of G(/&>), while the phase 0(o>) = 90° corresponds
to the imaginary part of G (/&>). When talking about stability and robustness properties,
we will refer again to the polar plot.

Since the range of frequencies required to study a linear system is usually very large,
it is often useful to plot the magnitude, |G(i<w)|, and phase, <J>(co), with respect to the
frequency, co, on a logarithmic scale of frequency, called Bode plots. In Bode plots,
the magnitude is usually converted to gain in decibels (dB) by taking the logarithm of
|G(i<w)| to the base 10, and multiplying the result with 20 as follows:

= 201og,0|G(ia>)| (2.52)

As we will see later in this chapter, important information about a linear, single-input,
single-output system's behavior (such as stability and robustness) can be obtained from
the Bode plots, which serve as a cornerstone of classical control design techniques.
Factoring the polynomials in G(/<w) (Eq. (2.47)) just produces addition of terms in
Iog10 \G(ico)\, which enables us to construct Bode plots by log-paper and pencil. Despite
this, Bode plots are cumbersome to construct by hand. With the availability of personal
computers and software with mathematical functions and graphics capability - such as
MATLAB - Bode plots can be plotted quite easily. In MATLAB, all you have to do is

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



FREQUENCY RESPONSE 31

specify a set of frequencies, a), at which the gain and phase plots are desired, and use the
intrinsic functions abs and angle which calculate the magnitude and phase (in radians),
respectively, of a complex number. If you have the MATLAB's Control System Toolbox
(CST), the task of obtaining a Bode plot becomes even simpler through the use of the
command bode as follows:

»G=tf(num,den); bode(G,w) <enter> %a Bode plot will appear on the screen

Here » is the MATLAB prompt, <enter> denotes the pressing of the 'enter' (or 'return')
key, and the % sign indicates that everything to its right is a comment. In the bode
command, w is the specified frequency vector consisting of equally spaced frequency
values at which the gain and phase are desired, G is the name given to the frequency
response of the linear, time-invariant system created using the CST LTI object function tf
which requires num. and den as the vectors containing the coefficients of numerator and
denominator polynomials, respectively, of G(/o>) in (Eq. (2.47)) in decreasing powers
of s. These coefficients should be be specified as follows, before using the tf and bode
commands:

»num=[bm bm_i ... bol; den=[an an-i ... a0 ] ; <enter>

By using the MATLAB command logspace, the w vector can also be pre-specified as
follows:

»w=logspace(-2,3); <enter> %w consists of equally spaced frequencies in the
range 0.01-1000 rad/s.

(Using a semicolon after a MATLAB command suppresses the print-out of the result on
the screen.)

Obviously, u; must be specified before you use the bode command. If you don't specify
w, MATLAB will automatically generate an appropriate w vector, and create the plot.

Instead of plotting the Bode plot, you may like to store the magnitude (mag), \G(ico)\,
and the phase, <£(&>), at given set of frequencies, w, for further processing by using the
following MATLAB command:

» [ m a g , p h a s e j w ] = b o d e ( n u m , d e n , w ) ; <enter>

For more information about Bode plots, do the following:

»help bode <enter>

The same procedure can be used to get help on any other MATLAB command. The
example given below will illustrate what Bode plots look like. Before we do that, let us
try to understand in physical terms what a frequency response (given by the Bode plot) is.

Musical notes produced by a guitar are related to its frequency response. The guitar
player makes each string vibrate at a particular frequency, and the notes produced by the
various strings are the measure of whether the guitar is being played well or not. Each
string of the guitar is capable of being excited at many frequencies, depending upon where

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



32 UNEAR SYSTEMS AND CLASSICAL CONTROL

the string is struck, and where it is held. Just like the guitar, any system can be excited
at a set of frequencies. When we use the word excited, it is quite in the literal sense,
because it denotes the condition (called resonance) when the magnitude of the frequency
response, |G(/o>)|, becomes very large, or infinite. The frequencies at which a system can
be excited are called its natural (or resonant) frequencies. High pitched voice of many
a diva has shattered the opera-house window panes while accidently singing at one of
the natural frequencies of the window! If a system contains energy dissipative processes
(called damping), the frequency response magnitude at natural frequencies is large, but
finite. An undamped system, however, has infinite response at each natural frequency. A
natural frequency is indicated by a peak in the gain plot, or as the frequency where the
phase changes by 180°. A practical limitation of Bode plots is that they show only an inter-
polation of the gain and phase through selected frequency points. The frequencies where
\G(i(o)\ becomes zero or infinite are excluded from the gain plot (since logarithm of zero
is undefined, and an infinite gain cannot be shown on any scale). Instead, only frequency
points located close to the zero magnitude frequency and the infinite gain frequencies of
the system can be used in the gain plot. Thus, the Bode gain plot for a guitar will consist
of several peaks, corresponding to the natural frequencies of the notes being struck. One
could determine from the peaks the approximate values of the natural frequencies.

Example 2.8

Consider the electrical network shown in Figure 2.19 consisting of three resistances,
/?i, /?2, and /?3, a capacitor, C, and an inductor, L, connected to a voltage source,
e(t), and a switch, 5. When the switch, 5, is closed at time t = 0, the current
passing through the resistance R\ is i'i(f), and that passing through the inductor, L,
is /2(0- The input to the system is the applied voltage, e(t), and the output is the
current, /2(0-

The two governing equations of the network are

- 12(01

0 = #2*2(0 + #3[*2(0 - i'i(01 + Li\

(2.53)

f:Jo
+ (I/O i2(r)dr (2.54)

:± e(f)

Figure 2.19 Electrical network for Example 2.8
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FREQUENCY RESPONSE 33

Differentiating Eq. (2.54) and eliminating i \ ( t ) , we can write

L/f(t) + [(R{R3 + fl,/?2 + /?2

"(0 (2.55)

Comparing Eq. (2.55) with Eq. (2.4) we find that the system is linear and
of second order, with y(t) = i 2 ( t ) , u(t) = e(t), aQ = l/C, a\ = (R[R3 + R\R2 +
R2R3)/(R} + R3), bo - 0, and b\ - R3/(R\ + R3). Hence, from Eq. (2.47), the
frequency response of the system is given by

For RI = R3 = 10 ohms, R2 = 25 ohms, L = 1 henry, and C = 10~6 farad, the
frequency response is the following:

x""1 /* \ / A C / * \ / F / * \2 i O f\ f ' \ t 1 /~\D T / ̂  £5 ""7 \G(i(jo) = (j.5(i(t))/[(i(jL>) + 30(jco) + 10 I (2.57)

Bode gain and phase plots of frequency response given by Eq. (2.57) can be plotted
in Figure 2.20 using the following MATLAB commands:

»w=logspace(-1,4); <enter>

(This command produces equally spaced frequency points on logarithmic scale from
0.1 to 10000 rad/s, and stores them in the vector w.)

»G=i*w*0.5. / ( - w . *w+30*i*w+1e6); <enter>

CO

10

90

-90

102

Frequency (rad/sec)

101 102

Frequency (rad/sec)

103

103

104

104

Figure 2.20 Bode plot for the electrical network in Example 2.8; a peak in the gain plot and
the corresponding phase change of 180° denotes the natural frequency of the system
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34 LINEAR SYSTEMS AND CLASSICAL CONTROL

(This command calculates the value of G(/o>) by Eq. (2.57) at each of the speci-
fied frequency points in w, and stores them in the vector G. Note the MATLAB
operations.* and ./ which allow element by element multiplication and division,
respectively, of two arrays (see Appendix B).)

»gain=20*loglO(abs(G)) ; phase=180*angle(G)/pi; <enter>

(This command calculates the gain and phase of G(io>) at each frequency point in
w using the MATLAB intrinsic functions abs, angle, and loglO, and stores them in
the vectors gain and phase, respectively. We are assuming, however, that G does
not become zero or infinite at any of the frequencies contained in if.)

»subplot(211 ) , semilogx(w,gain) , grid, subplot(212) , semilogx(w,phase) ,
grid <enter>

(This command produces gain and phase Bode plots as two (unlabeled) subplots,
as shown in Figure 2.20. Labels for the axes can be added using the MATLAB
commands xlabel and y label.)

The Bode plots shown in Figure 2.20 are obtained much more easily through the
Control System Toolbox (CST) command bode as follows:

»num=[0.5 0]; den=[1 30 Ie6]; g=tf (num,den) , bode(g,w) <enter>

Note the peak in the gain plot of Figure 2.20 at the frequency, o> = 1000 rad/s.
At the same frequency the phase changes by 180°. Hence, u> = 1000 rad/s is the
system's natural frequency. To verify whether this is the exact natural frequency,
we can rationalize the denominator in Eq. (2.57) (i.e. make it a real number by
multiplying both numerator and denominator by a suitable complex factor - in this
case (— a>2 + 106) — 30/o> and express the magnitude and phase as follows:

\G(ia>)\ = [225o>4 + 0.25w2(-ft>2 + 106)2]1/2/[(-^2 + 106)2

0(o>) = tan~' (-(o2 + 106)/(30co) (2.58)

From Eq. (2.58), it is clear that |G(/<w)| has a maximum value (0.0167 or
-35.547 dB) - and </>(<*>) jumps by 180° - at co = 1000 rad/s. Hence, the natural
frequency is exactly 1000 rad/s. Figure 2.20 also shows that the gain at CD =
0.1 rad/s is -150 dB, which corresponds to |G(0.1/)| = 10~75 = 3.1623 x 10~8,
a small number. Equation (2.58) indicates that |G(0)| =0. Hence, CD = 0.1 rad/s
approximates quite well the zero-frequency gain (called the DC gain) of the system.
The frequency response is used to define a linear system's property called bandwidth
defined as the range of frequencies from zero up to the frequency, <Wb, where
|G(/o>b)| = 0.707|G(0)|. Examining the numerator of |G(/w)| in Eq. (2.58), we
see that |G(/o>)| vanishes at CD = 0 and a> = 1999 100 rad/s (the numerator roots
can be obtained using the MATLAB intrinsic function roots). Since |G(0)| =0,
the present system's bandwidth is 0% = 1999 100 rad/s (which lies beyond the
frequency range of Figure 2.20). Since the degree of the denominator polynomial
of G(iu>) in Eq. (2.47) is greater than that of the numerator polynomial, it follows
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FREQUENCY RESPONSE 35

that \G(ico)\ -> 0 as a> -> oo. Linear systems with G(ico) having a higher degree
denominator polynomial (than the numerator polynomial) in Eq. (2.47) are called
strictly proper systems. Equation (2.58) also shows that 0(<w) -» 90° as co —> 0,
and 0(<w) —> —90° as co —> oo. For a general system, $(&>) -> —£90° as a> -> oo,
where k is the number by which the degree of the denominator polynomial of G(ico)
exceeds that of the numerator polynomial (in the present example, k = 1).

Let us now draw a polar plot of G(ico) as follows (note that we need more
frequency points close to the natural frequency for a smooth polar plot, because of
the 180° phase jump at the natural frequency):

»w=[logspace(-1,2.5) 350:2:1500 logspace(3.18,5)]; <enter>

(This command creates a frequency vector, w, with more frequency points close to
1000 rad/s.)

»G=i*w*0.5. / ( - w . *w+30*i*w+1e6); <enter>

»polar(angle(G), abs (G ) ) ; <enter>

(This command for generating a polar plot requires phase angles in radians, but the
plot shows the phase in degrees.)

The resulting polar plot is shown in Figure 2.21. The plot is in polar coordinates,
\G(ia))\ and 0(&>), with circles of constant radius, \G(i(o)\, and radial lines of
constant 0 (&>) overlaid on the plot. Conventionally, polar plots show either all posi-
tive, or all negative phase angles. In the present plot, the negative phase angles have
been shown as positive angles using the transformation 0 -> (<p + 360°), which is
acceptable since both sine and cosine functions are invariant under this transfor-
mation for 4> < 0 (e.g. 0 = —90° is the same as 0 = 270°). Note that the 0° and

120°.,- |
' =0.018

180

210

240°"--- ! •• 300°
270°

Figure 2.21 Polar plot of the frequency response, G(/&>), of the electrical system of Example 2.8
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