Al rights reserved. May not be reproduced in any formwi thout permssion fromthe publisher, except fair uses permtted under U S. or applicable copyright |aw.

Copyright 2002. John Wley and Sons, Inc.

36 LINEAR SYSTEMS AND CLASSICAL CONTROL

90° radial lines represent the real and imaginary parts, respectively, of G(iw). The
polar curve is seen in Figure 2.21 to be a circle of radius 0.00835 centered at the
point 0.00835 on the real axis. The direction of increasing w is shown by arrows on
the polar curve. The shape and direction (with increasing w) of a polar plot gives
valuable insight about a linear system’s stability, which will be seen in Section 2.10.

2.4 Laplace Transform and the Transfer Function

In the previous section we had confined our attention to the steady-state response of
a linear system to harmonic inputs. Here we would like to consider the toral response
(both transient and steady-state) of a linear, single-input, single-output system when the
applied input is some arbitrary function of time. We saw how the representation of a
harmonic input by a complex function transformed the governing differential equations
into a complex algebraic expression for the frequency response. For a general input,
a similar complex expression can be obtained by applying the Laplace transformation
(denoted by [) to the input, u(t), defined as

U@s) = Lu(t) = f e Mu(t)dt (2.59)
0

where s denotes the Laplace variable (a complex number), and U (s) is called the Laplace
transform of u(t). The Laplace transform of a function u«(z) is defined only if the infinite
integral in Eq. (2.59) exists, and converges to a functional form, U (s). However, if U(s)
exists, then it is unique. The convergence of the Laplace integral depends solely upon
the shape of the function, u(¢). It can be shown rigourously that the Laplace integral
converges only if u(t) is piecewise continuous (i.e. any time interval, however large, can
be broken up into a finite number of sub-intervals over each of which u(r) is continuous,
and at the ends of each sub-interval, u(r) is finite) and bounded by an exponential (i.e.
there exists a constant a such that e~ |u(t)| is bounded at all times). The term bounded
implies that a function’s value lies between two finite limits. Most of the commonly used
input functions are Laplace transformable. For example, if u(t), is discontinuous (i.e.
it has a jump) at t = 0, such as u(¢) = §(¢) or u(t) = u,(¢t), we can obtain its Laplace
transform. In such a case, the lower limit of integration in Eq. (2.59) is understood to be
Jjust before t = 0, i.e. just prior to the discontinuity in u(t). Some important properties
of the Laplace transform are stated below, and you may verify each of them using the
definition given by Eq. (2.59):

(a) Linearity:
If a is a constant (or independent of s and ¢) and Lf (1) = F(s), then

Llaf()) =aLlf@t) =aF(s) (2.60)
Also, if Lfi(t) = F(s) and Lf>(t) = F>(s), then
L{fi() + (D)} = Fi(s) + Fa(s) (2.61)
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(b) Complex differentiation:
If Lf(t) = F(s), then
Litf (1)) = —dF(s)/ds (2.62)

(c) Complex integration:
If Lf(t) = F(s), and if lim,_,o f(¢)/t exists as ¢ = 0 is approached from the positive
side, then

Lif1)/t} = f F(s)ds (2.63)
(d) Translation in time:
If Lf(¢) = F(s), and a is a positive, real number such that f(t —a) =0for0 < <

a, then
Lf@t—a)=e“F(s) (2.64)

(e) Translation in Laplace domain:
If Lf(t) = F(s), and a is a complex number, then

L{e" f()} = F(s —a) (2.65)

(f) Real differentiation:
If Lf(t) = F(s), and if f D) is Laplace transformable, then

LV =sF(s) — f£(0) (2.66)

where f(07) denotes the value of f(¢) in the limit 7 — 0, approaching ¢ = 0 from the
positive side. If we apply the real differentiation property successively to the higher
order time derivatives of f(r) (assuming they are Laplace transformable), we can
write the Laplace transform of the kth derivative, f®(z), as follows:

LIO@ =5 F(s) =" f07) =2 OO = = s D0 267

(g) Real integration:
If Lf(t) = F(s), and the indefinite integral [ f(¢) dt is Laplace transformable, then

0
L {/ f@) dt} = F(s)/s + (l/s)/ f@)dr (2.68)
Note that the integral term on the right-hand side of Eq. (2.68) is zero if f(tr) =0
forr < 0.

(h) Initial value theorem:
If Lf(t) = F(s), fV(¢) is Laplace transformable, and lim,_, o s F(s) exists, then

FOF) =limg 00 s F(s) (2.69)

(i) Final value theorem:
If Lf(t)=F(s), f(t) is Laplace transformable, and lim,_, o f(1) = f(c0)
exists, then
f(o0) = limy_osF(s) (2.70)
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38 LINEAR SYSTEMS AND CLASSICAL CONTROL

Since we are usually dealing with positive values of time, we will replace 0* by 0 in all
relevant applications of the Laplace transform. It is easy to see that if the input, u(t), and
its time derivatives are Laplace transformable, then the differential equation (Eq. (2.4)) of
a linear, time-invariant system is Laplace transformable, which implies that the output,
y(¢), is also Laplace transformable, whose Laplace transform is Y (s). For simplicity, we
assume that all initial conditions for the input, u(¢), and its derivatives and the output,
y(t), and its derivatives are zeros. Then, using Eq. (2.67) we can transform the governing
equation of the system (Eq. (2.4)) to the Laplace domain as follows:

(5"@n + " 'auoy 4 -+ 5a1 + )Y (5) = ("B + 5" by + -+ 5by + b,)U(5)
2.71)
Equation (2.71) brings us to one of the most important concepts in control theory,
namely the transfer function, G(s), which is defined as the ratio of the Laplace transform
of the output, Y (s), and that of the input, U (s), given by

G(s) = Y(s)/U(s) (2.72)

Substituting Eq. (2.71) into (2.72), we obtain the following expression for the transfer
function of a linear, single-input, single-output system:

G(5) = ("bm + 5" bt + - +5b1 + b,)/(s"an + 5"y + - + sa1 + a,)

(2.73)
As we saw in Chapter 1, the transfer function, G(s), represents how an input, U (s), is
transferred to the output, Y (s), or, in other words, the relationship between the input
and output, when the initial conditions are zero. The transfer function representation of
a system is widely used in block diagrams, such as Figure 2.22, and is very useful for
even such systems for which the governing differential equations are not available. For
such unknown systems, the transfer function is like a black-box defining the system’s
characteristics.

By applying known inputs (such as the singularity functions or harmonic signals)
and measuring the output, one can determine an unknown system’s transfer function
experimentally. To do so, we have to see what are the relationships between the transfer
function and the responses to singularity functions, and between the transfer function and
the frequency response. The latter relationship is easily obtained by comparing Eq. (2.73)
defining the transfer function, G (s), with Eq. (2.47), which defines the frequency response,
G(iw). We see that the two quantities can be obtained from one another by using the
relationship s = iw (that is the reason why we knowingly used the same symbol, G(.),
for both transfer function and the frequency response). A special transform, called the
Fourier transform, can be defined by substituting s = iw in the definition of the Laplace
transform (Eq. (2.59). Fourier transform is widely used as a method of calculating the

Input, (s Output, Y(s)
put., (As) Transfer function tput, Yis)
G(s) = Y(s)/UNs)

Figure 2.22 Transfer function representation of a single-input, single-output system
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LAPLACE TRANSFORM AND THE TRANSFER FUNCTION 39

response of linear systems to arbitrary inputs by transforming an arbitrary input, u(z), to
its frequency domain counterpart, U (iw) as follows:

Uliw) =/ e ly(r)dt (2.74)
0

(The lower limit of integration in Eq. (2.74) is replaced by —oo if u(r) #0 for t <
0.) Then, from Eq. (2.72), we can determine the resulting output (assuming zero initial
conditions) in the frequency domain as Y (iw) = G(iw)U (iw) (where G(iw) is the pre-
determined frequency response), and apply the inverse Fourier transform to obtain the
output in the time-domain as follows:

y(t) = 1/Q2n) f e 'Y (iw)dw (2.75)

Note that in Egs. (2.74) and (2.75), the Fourier transforms of the input and the output,
U(iw) and Y (iw), do not have any physical significance, and in this respect they are
similar to the Laplace transforms, U(s) and Y(s). However, the frequency response,
G (iw), is related to the steady-state response to harmonic input (as seen in Section 2.3),
and can be experimentally measured. The transfer function, G(s), however, is a useful
mathematical abstraction, and cannot be experimentally measured in the Laplace domain.
The Laplace variable, s, is a complex quantity, s = o + iw, whose real part, o, denotes
whether the amplitude of the input (or output) is increasing or decreasing with time. We
can grasp this fact by applying the inverse Laplace transform, L' (i.e. going from the
Laplace domain to the time domain) to Eq. (2.59)

o+ioo
yit) =LY (s) = 1/(271[')/ Y(s)e*'ds (2.76)
0 —i00
where the integral is performed along an infinitely long line, parallel to the imaginary
axis with a constant real part, o (Figure 2.23). Note that inverse Laplace transform:- is
possible, because Y (s) (if it exists) is unique.

Imaginary
axis =0 +ico
o A
(i)
S =cg+iw
0 o " Real axis
s=o-iw
~(iew)
Y

§ = g—ioo

Figure 2.23 The Laplace domain
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40 LINEAR SYSTEMS AND CLASSICAL CONTROL

From Eq. (2.76) we can see that a general output, y(¢), will consist of such terms as
yoe*' (where yo is a constant), which can be expressed as ype®'e*®. The latter term
indicates a periodically changing quantity of frequency, w, whose amplitude is a function
of time given by yge®’. When dealing with non-harmonic inputs and outputs, the use of the
Laplace transform and the transfer function, G(s), is more rewarding than working with
the Fourier transform and the frequency response, G (iw), because the resulting algebraic
expressions are much simpler through the use of s rather than (iw). However, use of G(s)
involves interpreting system characteristics from complex (rather than purely imaginary)
numbers.

The roots of the numerator and denominator polynomials of the transfer function, G(s).
given by Eq. (2.73) represent the characteristics of the linear, time-invariant system. The
denominator polynomial of the transfer function, G(s), equated to zero is called the
characteristic equation of the system, given by

s"a, +s"'a,_ + - +sa;+ay=0 2.7

The roots of the characteristic equation are called the poles of the system. The roots of
the numerator polynomial of G(s) equated to zero are called the zeros of the transfer
function, given by

$"bm + 5" by + -+ sby + by =0 (2.78)

In terms of its poles and zeros, a transfer function can be represented as a ratio
of factorized numerator and denominator polynomials, given by the following rational
expression:

GO =K —z21)6~22)...(s —zm)/l(s = p1)(s — p2) ... (s — pu)]

m n
=K []e-z)/[]6—pp (2.79)

i=1 j=1
where K is a constant (sometimes referred to as the gain), z;(i = 1,2,...,m) and p;(j =
1,2,...,n) are the zeros and poles of the system, respectively, and [T is a short-hand

notation denoting a product of many terms (in the same manner as X denotes a summation
of many terms). Equation (2.79) is also called zero-pole-gain description of a linear, time-
invariant system, which can be modeled by the MATLAB Control System Toolbox's
(CST) LTI object, zpk. As in Eq. (2.1), we repeat that for most linear, time-invariant
systems m < n. Such systems are said to be proper. If m < n, the system is said to be
strictly proper. Also, note that some zeros, z;, and poles, p;, may be repeated (i.e. two or
more poles (or zeros) having identical values). Such a pole (or zero) is said to be multiple.
and its degree of multiplicity is defined as the number of times it occurs. Finally, it may
happen for some systems that a pole has the same value as a zero (i.e. p; = z; for some
pair (i,j)). Then the transfer function representation of Eq. (2.79) will not contain those
poles and zeros, because they have canceled each other out. Pole-zero cancelations have
a great impact on a system’s controllabilty or observability (which will be studied in
Chapter 5).
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Example 2.9

Revisiting the electrical network of Example 2.8, we can write the system’s transfer
function as

G(s) = 0.55/(s* + 30s + 10%) (2.80)

which indicates a zero at the origin (z; = 0), and the two complex poles given by
the solution of the following quadratic characteristic equation:

s +30s +10° =0 (2.81)

To get a better insight into the characteristics of a system, we can express each
quadratic factor (such as that on the left-hand side of Eq. (2.81)) of the denominator
polynomial as s? + 2¢w,s + w?, where w, is a natural frequency of the system (see
Section 2.3), and ¢ is called the damping ratio. The damping ratio, ¢, governs how
rapidly the magnitude of the response of an unforced system decays with time. For
a mechanical or electrical system, damping is the property which converts a part
of the unforced system’s energy to heat, thereby causing the system’s energy — and
consequently the output — to dissipate with time. Examples of damping are resis-
tances in electrical circuits and friction in mechanical systems. From the discussion
following Eq. (2.76), it can be seen that ¢ is closely related to the real part, o, of a
complex root of the characteristic equation (pole) given by s = o = iw. The roots of
the characteristic equation (or, in other words, the poles of the system) expressed as

57+ 26w,s + @l =0 (2.82)

are
s=p1=—gw, —iw, (" — H'? (2.83)

and
S =pr=—Cw, +iw,(¢* — D'? (2.84)

Note that the real part of each pole is 0 = —¢gw,, while the imaginary parts
are £ = +w,(c> — 1)!/2. For the present example, the poles are found by solving
Eq. (2.81) to be p;» = —15 4+ 999.9i, which implies that the natural frequency and
damping-ratio are, w, = 1000 rad/s and ¢ = 0.015, respectively. These numbers
could also have been obtained by comparing Eq. (2.81) and Eq. (2.82). The natural
frequency agrees with our calculation in Example 2.8, which was also observed as
a peak in the Bode gain plot of Figure 2.20. The positive damping-ratio (or the
negative real part of the complex poles) indicates that the amplitude of the response
to any input will decay with time due to the presence of terms such as yge®’e®i®
in the expression for the output, y(z).

One can see the dependence of the response, y(¢), on the damping-ratio, ¢, in
Figure 2.24, which is a plot of a typical initial response of an unforced second order
system. ¢ = 1 is the limiting case, called critical damping, because it denotes the
boundary between oscillatory and exponentially decaying response. For 0 < ¢ < 1,
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42 LINEAR SYSTEMS AND CLASSICAL CONTROL

T T T
............. ¢ =1 (critically damped)
................ ¢ > 1 (overdamped)
0 < ¢ <1 (underdamped)

i)
1)

Y Time (1)

Figure 2.24 Dependence of the response of a second order system on the damping-ratio, ¢

the response is oscillatory with amplitude decreasing with time (called the under-
damped case), while for ¢ > 1, the response decays exponentially (called the over-
damped case). Clearly, the larger the value of the damping-ratio, ¢, the faster the
response decays to zero. The case for which ¢ < 0 denotes a response with expo-
nentially increasing amplitude. A response, y(t), whose limit as t — o0, either does
not exist or is infinite, is called an unbounded response. Clearly, ¢ < O case has an
unbounded response. As soon as we see a linear system producing an unbounded
response to a bounded input (i.e. an input whose finite limit exists as ¢t — 0o) and
finite initial conditions, we call the system unstable. A further discussion of stability
follows a little later.

Locations of poles and zeros in the Laplace domain determine the characteristics of a
linear, time-invariant system. Some indication of the locations of a poles and zeros can
be obtained from the frequency response, G (iw). Let us go back to Figure 2.20, showing
the Bode plots of the electrical system of Examples 2.8 and 2.9. Due to the presence of
a zero at the origin (see Eq. (2.80)), there is a phase of 90° and a non-zero (dB) gain at
w = 0. The presence of a complex conjugate pair of poles is indicated by a peak in the
gain plot and a phase change of 180°. The difference between the number of zeros and
poles in a system affects the phase and the slope of the Bode gain plot with frequency
(in units of dB per decade of frequency), when the frequency is very large (i.e. in the
limit @ — 00). From Eq. (2.79), we can say the following about gain-slope and phase in
the high-frequency limit:

lim,,_, o d{2010g,, |G (iw)l}/dw = 20(m — n) dB/decade

: | (m—n)90° ifK >0 (2.85)
llmw—Mx: ¢((l)) ~ [(m _ n)90° B 1800 K <0
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LAPLACE TRANSFORM AND THE TRANSFER FUNCTION 43

Note that the expressions in Eq. (2.85) are only approximate. For example, the transfer
function in Eq. (2.80) has K = 0.5, m = 1, and n = 2, which implies that the gain-siope
and phase in the limit w — oo should be —20 dB/decade and —90°, respectively. These
values are very good estimates (the phase is exactly —90°) of the frequency response
plotted in Figure 2.20.

Example 2.10

Consider a linear model describing the longitudinal dynamics of an aircraft
(Figure 2.25). Three different output variables (in the Laplace domain) are of interest
when the aircraft is displaced from the equilibrium point (defined by a constant angle
of attack, ay, a constant longitudinal velocity, vy, and a constant pitch-angle, 6g):
the change in airspeed, v(s), the change in the angle of attack, «(s), and the change
in pitch angle, 8(s). The input variable in the Laplace domain is the elevator angle,
3(s). The three transfer functions separately defining the relationship between the
input, 8(s), and the three respective outputs, v(s), a(s), and 9(s), are as follows:

v(5)/8(s) = —0.0005(s — 70)(s + 0.5)/[(s% + 0.005s + 0.006)(s2 + s + 1.4)]

(2.86)
als)/8(s) = —0.02(s + 80)(s> + 0.0065s + 0.006)/
[(s? 4 0.005s + 0.006) (s> + s + 1.4)] (2.87)
6(s)/8(s) = —1.4(s + 0.02)(s + 0.4)/[(s> + 0.005s + 0.006)(s* + 5 + 1.4)]
(2.88)

It should be noted that all three transfer functions have the same denominator
polynomial, (s? 4+ 0.005s + 0.006)(s?> + s + 1.4). Since we know that the denomi-
nator polynomial equated to zero denotes the characteristic equation of the system,
we can write the characteristic equation for the aircraft’s longitudinal dynamics as

(s + 0.005s + 0.006) (s> +s + 1.4) = 0 (2.89)

Aircraft's
fongitudinal

Horizontal plane ; N
; N
/ : Eilevator
Direction of Aircraft’s i . )
relative air lateral (Yaw)| | Vertical axis
flow axis ‘
Gyt 6

Figure 2.25 Llongitudinal dynamics of an airplane, with outputs a, 8, and v denoting small
changes in angle of attack, pitch angle, and velocity component along longitudinal axis, respec-
tively, and input, elevator deflection, §. The equilibrium condition is denotedbya = 8 = v =5 =0
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Equation (2.89) indicates that the systems complex poles are given by rwo
quadratic factors (s* + 0.005s + 0.006) and (s2 + s + 1.4). Comparing the result
with that of Example 2.9, where the quadratic factor in the characteristic polynomial
was expressed as s+ 2¢w,s + w2, we can see that here we should expect
two values of the natural frequency, w,, and the damping-ratio, ¢, i.e. one
set of values for each of the mwo quadratic factors. These values are the
following:

(a) ¢ =0.4226; w, = 1.1832 rad/s (short-period mode)
(b) ¢ =0.0323; w, = 0.0775 rad/s (long-period, or phugoid mode)

Using MATLAB’s Control System Toolbox (CST) command damp, the damping-
ratio and natural frequency associated with each quadratic factor in the characteristic
equation can be easily obtained as follows:

>>a={1 0.005 0.006]; damp(a) % first quadratic factor <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.0025+0.07741 0.0323 0.0775
-0.0025-0.07741 0.0323 0.0775

>>b=[1 1 1.4]; damp(b) % second quadratic factor <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.5000+1.07241 0.4226 1.1832
-0.5000-1.0724i 0.4226 1.1832

Note that the CST command damp also lists the eigenvalues, which are nothing
but the roots of the characteristic polynomial (same as the poles of the system).
We will discuss the eigenvalues in Chapter 3. (Alternatively, we could have used
the intrinsic MATLAB function roots to get the pole locations as the roots of each
quadratic factor.) As expected, the poles for each quadratic factor in the characteristic
equation are complex conjugates. Instead of calculating the roots of each quadratic
factor separately, we can multiply the two quadratic factors of Eq. (2.89) using
the intrinsic MATLAB command conv, and then directly compute the roots of the
characteristic polynomial as follows:

>>damp(conv(a,b))% roots of the characteristic polynomial <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.0025+0.07741 0.0323 0.0775
-0.0025-0.07741 0.0323 0.0775
-0.5000+1.07241i 0.4226 1.1832
-0.5000-1.07241 0.4226 1.1832

The pair of natural frequencies and damping-ratios denote two natural modes
of the system, i.e. the two ways in which one can excite the system. The first
mode is highly damped, with a larger natural frequency (1.1832 rad/s), and is called
the short-period mode (because the time-period of the oscillation, T = 27w /w, is
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LAPLACE TRANSFORM AND THE TRANSFER FUNCTION 45

smaller for this mode). The second characteristic mode is very lightly damped with
a smaller natural frequency (0.0775 rad/s) — hence, a longer time-period — and is
called the long-period (or phugoid) mode. While an arbitrary input will excite a
response containing both of these modes, it is sometimes instructive to study the
two modes separately. There are special elevator inputs, §(s), which largely excite
either one or the other mode at a time. (You may refer to Blakelock [3] for details
of longitudinal dynamics and control of aircraft and missiles.)

We now examine the Bode plots of each of the rhree transfer functions,
v(s)/8(s), x(s)/8(s), and 8(s)/5(s), respectively, to see how much is each output
variable influenced by each of the two characteristic modes. Figures 2.26, 2.27, and
2.28 show the gain and phase Bode plots for the three transfer functions in the limit
s = iw (they are the frequency responses of the concerned output variable). Using
Control Systems Toolbox (CST), these plots are directly obtained by the command
bode, after constructing each transfer function using the LTI object ¢f. Bode plot of
transfer function v(s)/3(s) (Figure 2.26) is generated using the following MATLAB
statements:

>>a=[1 -70]; b=[1 0.5]; num=-0.0005*conv(a,b) <enter>

num =
-0.0005 0.0348 0.0175

>>a=[1 0.005 0.006]; b=[1 1 1.4]; den=conv(a,b) <enter>

den =
1.0000 1.0050 1.4110 0.0130 0.0084

100

Phugoid mode Short-period mode Bode plot of v(s)/8(s)
it 1
H ] I il 1 i R N H

Gain (dB)

1072 107" 100 10’ 102 108
Frequency (rad/sec)

-180

Phase (deg.)

-360

oH

1072 1071 100 10! 102 10°

Frequency (rad/sec)

Figure 2.26 Bode plot of the aircraft's transfer function v(s)/8(s) with s = iw
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Phugoid mode Short-period mode Bode plot of a(s)/5(s)
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Figure 2.27 Bode plot of the aircraff's fransfer function a(s)/8(s) with s = iw

Bode plot of 6(s)/s(s) Phugoid mode Short-period mode
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Figure 2.28 Bode plot of the aircraft's transfer function 8(s)/5(s) with s = iw
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>>vdelta = tf(num,den) <enter>

Transfer function:
-0.0005 s~2+0.03475 s+0.0175

$"4+1.005 s"3+1.411 s°2+0.013 s+0.0084

>>bode(vdelta) % Figure 2.26 <enter>

The Bode plot of transfer function a(s)/8(s) (Figure 2.27) is generated using the
following MATLAB statements:

>>a={1 80];b=[1 0.0065 0.006]; num=-0.02*conv(a,b) <enter>

num =
-0.0200 -1.6001 -0.0105 -0.0096

>>alphadelta = tf(num,den) <enter>

Transfer function:
-0.02 $°3-1.6 s"2-0.01052 s-0.0096

s"4+1.005 s°3+1.411 s°2+0.013 s+0.0084
>>pode(alphadelta) % Figure 2.27 <enter>

(Note that the denominator polynomial, den, of a(s)/8(s) is same as that of
v(s)/8(s), and does not have to be re-calculated.)

Finally, the Bode plot of transfer function 6(s)/8(s) (Figure 2.28) is generated
using the following MATLAB statements:

>>a={1 0.02]; b=[1 0.4}; num=-1.4*conv(a,b) <enter>

num =
-1.4000 -0.5880 -0.0112

>>thetadelta = tf(num,den) <enter>

Transfer function:
-1.4 s°2-0.588 s-0.0112

§"4+1.005 s"3+1.411 s°2+0.013 s+0.0084

>>pode (thetadelta) % Figure 2.28 <enter>

From the Bode plots (Figures 2.26-2.28), we can note the natural frequencies
of the phugoid and the short period modes, respectively, as either the peaks or
changes of slope (called breaks) in the respective gain plots. The peaks due to
complex poles sometimes disappear due to the presence of zeros in the vicinity
of the poles. As expected, the natural frequencies agree with the values already
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calculated from the characteristic polynomial, because all the three transfer func-
tions have the same characteristic (denominator) polynomial. Figure 2.26 shows
that the magnitude (gain) of v(iw)/é(iw) at the short period natural frequency is
very small, which indicates that the short period mode oscillation is characterized
by very small changes in forward velocity, v(iw), which can be neglected (i.e.
v(iw) = 0) to obtain a short period approximation. As expected, near each natural
frequency the phase changes by 180°, except for the phugoid mode in a(iw)/8(iw)
(Figure 2.27). The latter strange behavior of the phugoid mode is due to the fact that
in the transfer function a(iw)/é(iw), one of the numerator quadratics (i.e. a pair
of complex zeros) almost cancels out the quadratic corresponding to the phugoid
mode in the denominator polynomial (i.e. a pair of complex poles), indicating that
there is essentially no change in the angle-of-attack, a(iw), in the phugoid mode.
Also, the magnitude (gain) of a(iw)/3(iw) at the phugoid natural frequency is seen
to be very small in Figure 2.27 as compared to the gain at the same frequency in
Figures 2.26 and 2.28. The fact that the phugoid oscillation does not involve an
appreciable change in the angle-of-attack, a(iw), forms the basis of the phugoid
approximation in which a(iw) = 0. However, Figure 2.28 shows that considerable
magnitude (gain) of (iw)/8(iw) exists at both short period and the phugoid natural
frequencies. Hence, both modes essentially consist of oscillations in the pitch angle,
0(iw). The present example shows how one can obtain an insight into a system’s
behavior just by analyzing the frequency response of its transfer function(s).

Note from Figures 2.26-2.28 that the gains of all three transfer functions decay
rapidly with frequency at high frequencies. Such a decay in the gain at high
frequencies is a desirable feature, called roll-off, and provides attenuation of high
frequency noise arising due to unmodeled dynamics in the system. We will define
sensitivity (or robustness) of a system to transfer function variations later in this
chapter, and formally study the effects of noise in Chapter 7. Using Eq. (2.85),
we can estimate the high-frequency gain-slope and phase of the three transfer
functions given by Eqgs. (2.86)—(2.88). For v(s)/6(s), K <0, m =2, and n = 4,
which implies a gain-slope (or roll-off) of —40 dB/decade and a phase of —360°
(or 0°) in the limit @ — oo, which are confirmed in Figure 2.26. For a(s)/8(s),
K <0, m =3, and n = 4, which implies a roll-off of —20 dB/decade and a phase
of —270° (or 90°) in the limit @ — oo, which are evident in Figure 2.27. Finaily,
for 6(s)/8(s), K <0, m = 2, and n = 4, which implies a gain-slope (or roll-off) of
—40 dB/decade and a phase of —360° (or 0°) in the limit @ — oo, which are also
seen in Figure 2.28.

The transfer function v(s)/8(s) has a peculiarity which is absent in the other
two transfer functions — namely, a zero at s = 70. A system with transfer function
having poles or zeros in the right-half s-plane is called a non-minimum phase
system, while a system with all the poles and zeros in the left-half s-plane, or on
the imaginary axis is called a minimum phase system. We will see below that systems
which have poles in the right-half s-plane are unstable. Hence, stable non-minimum
phase systems have only zeros in the right-half s-plane, such as the system denoted
by v(s)/8(s). Stable non-minimum phase systems have a markedly different phase in
the limit @ — oo (we may have to add or subtract 360° to find non-minimum phase
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from Eq. (2.85)), when compared to a corresponding minimum phase system (i.e.
a similar system with no zeros in the right-half s-plane). This usually results in an
unacceptable transient response. A non-minimum phase system with only one right-
half plane zero (such as v(s)/8(s)) results in a transient response which is of opposite
sign when compared to the input. Popular examples of such systems are aircraft or
missiles controlled by forces applied aft of the center of mass. For this reason, a
right-half plane zero in an aircraft (or missile) transfer function is called ‘tail-wags-
the-dog zero’. Control of non-minimum phase systems requires special attention.

Before we can apply the transfer function approach to a general system, we must know
how to derive Laplace transform (and inverse Laplace transform) of some frequently
encountered functions. This information is tabulated in Table 2.1, using the definitions
and properties of the Laplace transform (Egs. (2.59)-(2.70)). Note that Table 2.1 gives
the Laplace transform of some commonly encountered functions, f(t), which are defined
fort > 0. Att = 0, f(¢) can have a discontinuity, such as f(¢) = u,(z) or f(¢) =6(t). It
is interesting to see in Table 2.1 that the Laplace transform of the unit impulse function,
§(r), is unity, while that of the unit step function, us(¢), is 1/s. Since du,(r)/dr = 3(1),
the Laplace transforms of these two singularity functions agree with the properties given
by Eqgs. (2.66) and (2.68).

Table 2.1 Laplace transforms of some common functions

. 1) F(s)=Lf@) = [Fe f()dt
No. (r=0)

) e 1/(s +a)

2 e f(t) F(s +a)

3 " nl/snt!

4 Unit Step 1/s

Function, u,(2)

5 sin(wt) w/(s* + w?)

6 cos(wt) s/(5% + w?)

7 FO) sKF(s) = s57 1 f(0) —s* 2 FD0) — -+« = fED(0)
8 [l f0)d F(s)/s + (1/s) [*, f(t)dt

9 Unit Impulse 1

Function, 6(¢)

Example 2.11

Consider a system with the following transfer function:
G(s)=(4+3)/I(s+ (s +2)] (2.90)

The second order system (denominator polynomial is of degree 2) has a zero, z; =
-3, and two poles, p; = —1 and p; = —2. Let us assume that the system has the
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input, #(t), and initial conditions as follows:
u(t) =0, y(0) = yo, y"(0) =0 (2.91)

Since G(s) = Y(s)/U(s) when the initial conditions are zero (which is not the
case here), we cannot directly use the transfer function to determine the system’s
response, y(t), for t+ > 0. Let us first derive the system’s governing differential
equation by applying inverse Laplace transform to the transfer function (with zero
initial conditions, because that is how a transfer function is defined) as follows:

(s + 1)(s +2)Y(s) = (s + 3)U(s) (2.92)
or
s2Y (s) + 3sY(s) + 2Y (s) = sU(s) + 3U(s) (2.93)
and
L[5V (s) + 3sY (s) + 2Y (s)] = L7 [sU(s) + 3U (5)] (2.94)

which, using the real differentiation property (Eq. (2.67)) with zero initial conditions
for both input, u(t), and output, y(t), yields the following differential equation:

YO0 + 3y (1) + 2y(t) = uV (1) + 3u(r) (2.95)

Now, we can apply the Laplace transform to this governing differential equation
using real differentiation property with the input and the initial conditions given by
Eq. (2.91) as

LIy®@) + 3y V() + 2y(1)] = LIu(r) + 3u()] (2.96)
or
s2Y(s) — syp + 3sY(s) — 3yo + 2¥(s) =0 (2.97)
and it follows that
Y(s) = (s +3yo/[(s + D(s + )] (2.98)
We can express Y (s) as
Y(s) = yol2/(s + 1) ~ 1/(s +2)] (2.99

Equation (2.99) is called the partial fraction expansion of Eq. (2.98), where the
contribution of each pole is expressed separately as a fraction and added up. In
Eq. (2.99) the two numerator coefficients, 2 and —1, corresponding to the two
fractions are called the residues.

The output, y(z), of the system can then be obtained by applying inverse Laplace
transform to Eq. (2.99) for t > 0 as

y(t) = yolL7'2/(s + DI+ L7 [=1/(s + D]} (2.100)
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