
_ RESPONSE TO SINGULARITY FUNCTIONS _ _51

or, using the translation in Laplace domain property given by Eq. 2.65, we can
write the output finally as

y (t) = 2y(}z-< - y()e~-2r; (t > 0) (2, 101)

In Example 2.11 we have seen how we can evaluate a single-input, single-output
system's response if we know its transfer function, applied input and initial conditions,
by using a partial fraction expansion of Y (s). For a system with complex poles (such
as Example 2.8), finding partial fraction expansion can be very difficult. Fortunately, the
MATLAB intrinsic command residue makes finding partial fraction expansion a simple
affair. All one has to do is to specify the numerator and denominator polynomials of
the rational function in s - such as Eq. (2.98) - for which a partial fraction expansion is
desired. For example, if the rational function is N(s)/D(s), then the coefficients of the
polynomials N(s) and D(s) in decreasing powers of s are specified in two vectors, say,
n and d. Then the residue command is used as follows to give the terms of the partial
fraction expansion:

»[k ,p 5 c] = residue(n,d) <enter>

where p is a vector containing the poles of N(s)/D(s), k is a vector containing the
corresponding residues, and c is the direct constant. In terms of the elements of p and k,
the partial fraction expansion is given by

N (s) / D (s) = c + *i/(s - pi) + • • •+kn/(s - pn) (2.102)

where all the poles, PJ, are distinct (i.e. they appear only once - as in Example 2.1 1). If
a pole, say pm , is repeated q times, then the partial fraction expansion obtained from the
residue command is given by

N(s)/D(s) = c + k}/(s - Pl) + • • • + km/(s - pm) + km+{/(s - pm)2

+ km+2/(s ~ pmf H ----- h km+q-\/(s - pm)q H ----- h kn/(s - pn)

(2.103)
Now we are well equipped to talk about a linear system's response to singularity functions.

2.5 Response to Singularity Functions

In the previous two sections, we saw how frequency response, Laplace transform, and
transfer function can be used to evaluate a linear system's characteristics, and its response
to initial conditions (Example 2.11). Here we will apply a similar approach to find out a
linear system's response to singularity functions, and extend the method for the case of
arbitrary inputs. We had ended Section 2.2 with a remark on the special place held by
the unit impulse function in control theory. To understand why this is so, let us define
impulse response, g(t), as the response of a system to a unit impulse, 8(t), applied as
input at time t = 0. Furthermore, it is assumed that the system is at rest at t — 0, i.e. all

C
o
p
y
r
i
g
h
t

2
0
0
2
.

J
o
h
n

W
i
l
e
y

a
n
d

S
o
n
s
,

I
n
c
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD
AN: 83694 ; Tewari, Ashish.; Modern Control Design with MATLAB and SIMULINK
Account: s2888710.main.ehost

52 _ LINEAR SYSTEMS AND CLASSICAL CONTROL _

initial conditions (in terms of the output, y (t) , and its time derivatives) are zero. We know
from Table 2.1 that the Laplace transform of 5(0 is unity. Also, from the definition of the
transfer function for a single-input, single-output system (Eq. (2.72)) Y(s) = G(s)U(s).
Since, in this case, y(t) = g(0 and Laplace transform of the input, U(s)=l, it implies that
the following must be true:

g(t) = L~lY(s) = £-'[0(5)17(5)] = £-!0(5) (2.104)

Equation (2.104) denotes a very important property of the impulse response, namely
that the impulse response of a linear, time-invariant system with zero initial conditions
is equal to the inverse Laplace transform of the system's transfer Junction. Hence, the
symbol g(t) for the impulse response! One can thus obtain G(s) from g(t) by applying
the Laplace transform, or g(t) from G(s) by applying the inverse Laplace transform.
Since the transfer function contains information about a linear system's characteristics,
we can now understand why impulse response (and the unit impulse function) deserve
a special place in control theory. In a manner similar to the impulse response, we can
define the step response, s (t) , as a linear, time-invariant system's response to unit step
input, us(t), applied at time t = 0 with zero initial conditions. Again, using Table 2.1, we
note that Laplace transform of the unit step function is given by U(s) = 1/5, and the step
response can be expressed as

5(0 = £-![G(5)l/(5)] = £-'[0(5)75] (2.105)

which shows that the step response is also intimately related with a system's transfer
function, and hence with its characteristics.

Example 2.12

Let us revisit the second order system consisting of the electrical network of
Examples 2.8 and 2.9, and evaluate the impulse response, g(r), and step response,
5(0, for this system with zero initial conditions. Equation (2.80), gives the system's
transfer function as G(s) = 0.5s /(s2 + 30s + 106). Using the partial fractions ex-
pansion of G(s), we can write

0(5) = *i/(5 - p i) + k2/(s - P2} (2.106)

where p\ and pi are the two poles (roots of the denominator polynomial of
and the residues k\ and ki are evaluated as follows:

]|JS=p, = 0.5p,/(p, - P2) (2.107)

*2 - [(s - P2)G(S)]\S=P2 = 0.5p2/(p2 - Pi) (2.108)

Again, from Example 2.9 we know that p\ = — 15 — 999.9i and p2 = — 15 +
999.9i. Then from Eqs. (2.107) and (2.108), fc, = 0.25 - 0.00375/ and k2 = 0.25 +
0.00375/. The residues can be verified by using the MATLAB intrinsic command
residue as follows:

»N=[0.5 0]; D=[1 30 1e6]; [k,p,c]=residue(N,D) <enter>

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

RESPONSE TO SINGULARITY FUNCTIONS 53

k =
0.25000000000000+0.003750421946201
0.25000000000000-0.003750421946201

P =
1.Oe+002*
-0.15000000000000+9.998874936711631
-0.15000000000000-9.998874936711631

Taking the inverse Laplace transform of Eq. (2.106) with the use of Table 2.1, we
get the following expression for the impulse response, g(t):

g(t) = k\ exp(pjO + &2exp(/720; (t > 0) (2.109)

Using the fact that p\ and p2 are complex conjugates (and k\ and ki are also
complex conjugates), we can simplify Eq. (2.109) to give

g(t) = e~'5/[0.5cos(999.90 - 0.0075 sin (999.901; (t > 0) (2.110)

Note that the impulse response, g (t) , given by Eq. (2.110) has an amplitude which
decreases exponentially with time due to the term e~15r. This is a characteristic of
a underdamped, stable system, as seen in Figure 2.24.

Since the poles can also be represented in terms of their natural frequency, a)n , and
damping-ratio, g, as p2.\ = —gojn ± io)n(g

2 — l) l / 2 , (see Eqs. (2.83) and (2.84)) we
can also write

g(t) = y0e\p(-ga>nt)sm[a>nt (1 - g2)l/2 + 0]/(l - <T2)1/2; (t > 0) (2.111)

where 9 = cos""1^) and

yo = 2*,[(1 - <r
2)I/2]/e/(0-7r/2) = 2*2[(1 - ?

2)'/2]/e-
|'^-3r/2> (2.1 12)

You can verify Eqs. (2.1 11) and (2.1 12) using complex algebra, but don't worry
if you don't feel like doing so, because Eq. (2.109) can be directly obtained using
MATLAB to get the impulse response, g (t) , as follows:

»p1=-15-999.9i; p2=conj (p1) ; k1=0. 25-0. 003751; k2=conj(k1); <enter>

»t=0:0. 001:1; g=k1*exp(p1*t)+k2*exp(p2*t) ; plot(t,g),
xlabel('Time (s) ') , ylabel('g (t) ') <enter>

Here conj() is the intrinsic MATLAB operator that calculates the complex conju-
gate, exp() is the exponential function, and plot(x,y) is the MATLAB command for
plotting the vector x against the vector y. Note that both t and g are vectors of
the same size. Also, note the ease by which complex vector calculations have been
made using MATLAB. The same computation in a low-level language - such as

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

54 _ LINEAR SYSTEMS AND CLASSICAL CONTROL _

Fortran, Basic, or C - would require many lines of programming. For more infor-
mation on the usage of a MATLAB command type help < name of command>
<enter> at the MATLAB prompt.

We know from Example 2.9 that for the example electrical network, the natural
frequency and damping-ratio are, con = 1000 rad/s and g = 0.015, respectively.
Substituting these numerical values in Eq. (2.1 12), we get y0 = 0.5 amperes.

We can also evaluate the step response, s(t), of the electrical network by taking
the inverse Laplace transform of G(s)/s as follows:

s(t) = £Tl[G(s)/s] = £~}[0.5/(s2 + 30s + 106)]

= £-'[2.5 x KT4//(j - p i) - 2.5 x I0~4i/(s - p2)] (2.113)

or

s(t) = 2.5 x 10~4i[exp(pif) - exp(p2')l

= 5 x 10" V15' sin(999.9f); (t > 0) (2.114)

Note that 5(0 given by Eq. (2.114) also indicates a stable system due to the oscil-
latory step response with a decaying amplitude of 5 x 10~4e~15'.

The calculation of step and impulse responses can be generalized by using the partial
fraction expansion of G(s)/s and G(s), respectively. Taking the inverse Laplace transform
of Eq. (2.104), we can express the impulse response for a unit impulse input applied at
t = 0 as follows:

g(t) = cS(t) + k\ exp(pif) H ----- h km exp(pmf) + km+lt exp(pmr)

+ km+2t
2 e\p(pmt)/2 + • • • + km+q.it

t'-1 e\p(pmt)/(q - 1)!

+ ---+kne\p(pnt) (f > 0) (2.115)

Note that in deriving Eq. (2.1 15), we have used the translation in Laplace domain property
of the Laplace transform (Eq. (2.65)), and have written the inverse Laplace transform of
l/(s - p)k as tk~lep'/(k - 1)!. If the impulse is applied at t = tQ, the time t in Eq. (2.1 15)
should be replaced by (/ — to), since the Laplace transform of g(t — /o) is G(s) exp(— sto).
If the system is strictly proper (i.e. the degree of the numerator polynomial of the transfer
function, G(s), is less than that of the denominator polynomial), then the direct constant,
c, in the partial fraction expansion of G(s) is zero, and the impulse response does not go to
infinity at t = 0 (Eq. (2.1 15)). Hence, for strictly proper transfer functions, we can write
a computer program using MATLAB to evaluate the impulse response using Eq. (2.1 15)
with c = 0. Such a program is the M-file named impresp.m, which is listed in Table 2.2,
and can be called as follows:

> > [9>t] = impresp(num,den,tO,dt,tf) <enter>

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

_ RESPONSE TO SINGULARITY FUNCTIONS _ 55

Table 2.2 Listing of the M-file impresp. m, which calculates the impulse response of a strictly proper,
single-input, single-output system

impresp . m

function [y,t]=impresp(num,den,tO,dt,tf) ;
%Program for calculation of impulse response of strictly proper SISO

systems
%num = numerator polynomial coefficients of transfer function
%den = denominator polynomial coefficients of transfer function
%(Coeff icients of 'num' and 'den' are specified as a row vector, in
%decreasing powers of 's')
%tO = time at which unit impulse input is applied
%dt = time-step (should be smaller than 1/ (largest natural freq.))
%tf = final time for impulse response calculation
%y = impulse response; t= vector of time points
%copyright(c)2000 by Ashish Tewari
%
%Find a partial fraction expansion of num/ (den) :-
[r,p,k]=residue(num,den) ;
%Calculate the time points for impulse response : -
t=tO:dt:tf ;
%Find the multiplicity of each pole, p(j):-
for j=1 :size(p)
n=1;

for i=1 :size(p)
if p(j)==p(i)

n=n+1 ;
end

end
end

mult(: ,j)=n;
end
%Calculate the impulse response by inverse Laplace transform of
%partial-f raction expansion :-
y=zeros(size(t)) ;
j=1;
while j<=size(p,1)

for i=1 :mult(: ,j)
y=y+r(j+i-1)*((t-tO) .A(i-1)) . *exp(p(j)*(t-tO)) /factorial (i-1);
end
]=]+i;

end

where num and den are row vectors containing numerator and denominator polynomial
coefficients, respectively, of the transfer function, G(s), in decreasing powers of s, tO is the
time at which the unit impulse input is applied, dt is the time-step size, tf is the final time
for the response, g is the returned impulse response, and t is the returned vector of time
points at which g(t) is calculated. Instead of having to do inverse Laplace transformation
by hand, we can easily use impresp to quickly get the impulse response of a strictly proper

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

56 UNEAR SYSTEMS AND CLASSICAL CONTROL

Table 2.3 Listing of the M-file stepresp.m, which calculates the step response of a proper, single-input,
single-output system

stepresp.m

function [y,t]=stepresp(num>den,tOJdt)tf);
%Program for calculation of step response of proper SISO systems
%num = numerator polynomial coefficients of transfer function
%den = denominator polynomial coefficients of transfer function
%(Coefficients of 'num' and 'den' are specified as a row vector, in
%decreasing powers of 's')
%tO = time at which unit step input is applied
%dt = time-step (should be smaller than 1/(largest natural freq.))
%tf = final time for step response calculation
%y = step response; t= vector of time points
%copyright(c)2000 by Ashish Tewari
%
%Find a partial fraction expansion of num/(den.s):-
[r,p,k]=residue(num,conv(den,[1 0]));
%Calculate the time points for step response:-
t=tO:dt:tf;
%Find the multiplicity of each pole, p (j) : -
for j=1:size(p)
n=1;

for i=1:size(p)
if p(j)==p(i)

i f (i~=i)
n=n+1;
end

end
end

mult(:, j)=n;
end
%Calculate the step response by inverse Laplace transform of
%partial-fraction expansion:-
y=zeros(size(t));
j=1;
while j<=size(p,1)

for i=1:mult(:,j)
y=y+r(j+ i -1)*((t - tO) .* (i -1)) . *exp(p(j) * (t - tO)) / factor ia l (i - l) ;
end
i=i+i;

end

plant. The M-file impresp.m uses only the intrinsic MATLAB functions, and is useful for
those who do not have Control System Toolbox (CST). Usage of CST command impulse
yields the same result. (We postpone the discussion of the CST command impulse until
Chapter 4, as it uses a state-space model of the system to calculate impulse response.)
Note the programming steps required in impresp to identify the multiplicity of each pole
of G(s). For increased accuracy, the time-step, dt, should be as small as possible, and, in
any case, should not exceed the reciprocal of the largest natural frequency of the system.

In a manner similar to the impulse response, the step response calculation can be
generalized by taking the inverse Laplace transform of the partial fraction expansion of

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

_ RESPONSE TO SINGULARITY FUNCTIONS _ 57

G(s)/s as follows:

s(t) = k\+k2 exp(/?20 H ----- \-km exp(/7mr) + km+it e\p(pmt)

+ km+2t
2exp(pmt)/2 H ---- + km+q^~{ exp(pmt)/(q - 1)!

)(f >0) (2.116)

where k[is the residue corresponding to the pole at s = 0, i.e. p\ = 0, and ^2 ... kn are the
residues corresponding to the poles of G(s), p\ . . . pn, in the partial fraction expansion
of G(s)/s. Note that if G(s) is a proper transfer function (i.e. numerator polynomial
is of lesser or equal degree than the denominator polynomial), then G(s)/s is strictly
proper, and the direct term, c, is zero in the partial fraction expansion of G(s)/s. Thus,
we can evaluate the step response of a proper system using Eq. (2.1 16), which should be
modified for a unit step input applied at t = to by replacing t in Eq. (2.1 16) by (t — to). A
MATLAB program called stepresp.m, which evaluates the step response of proper system
by Eq. (2.116), is listed in Table 2.3, and can be used as follows:

»[s,t] = stepresp(num,den,tO,dt ,tf) <enter>

where num. and den are row vectors containing numerator and denominator polynomial
coefficients, respectively, of the transfer function, G(s), in decreasing powers of s, tO is
the time at which the unit step input is applied, dt is the time-step size, // is the final
time for the response, s is the returned step response, and t is a vector containing time
points at which s(t) is calculated. The M-file stepresp.m uses only intrinsic MATLAB
functions, and is useful in case you do not have access to Control System Toolbox (CST).
The CST command step is a quick way of calculating the step response. The GUI tool
associated with the command step also lets you get the values of s(t) and t at any point
on the step response curve by merely clicking at that point.

Example 2,13

Let us compute and plot the step and impulse responses of the aircraft transfer
function, 6(s)/8(s), of Example 2.10, given by Eq. (2.88). We must begin with the
specification of the transfer function as follows:

»a=[1 0.02]; b=[1 0 .4] ; num=-1 .4*conv(a,b) <enter>
num =

-1.4000 -0.5880 -0.0112

»a=[l 0.005 0.006]; b=[1 1 1.4]; den=conv(a,b) <enter>
den =
1.0000 1.0050 1.4110 0.0130 0.0084

Note that the transfer function is strictly proper (the numerator polynomial is of
second degree, while the denominator polynomial is of fourth degree). Hence, we
can use impresp.m to compute the impulse response, g(t), and plot the result as
follows:

»[g,t] = impresp(num, den, 0,0. 5,250) ; plot(t,g) <enter>

 EBSCOhost - printed on 10/27/2025 5:47 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

