
62 LINEAR SYSTEMS AND CLASSICAL CONTROL

Then the response is calculated using the M-file response.m as follows:

»y = r e s p o n s e ( n u m , d e n , t , u ) ; <enter>

where num and den were specified in Example 2.13. The calculated response is
plotted in Figure 2.30. Note the ease with which response.m calculates the response
to a complicated input function. A more general method of evaluating response of
even multi-input, multi-output systems based on the state-space approach will be
given in Chapter 4. MATLAB (CST) functions use the state-space approach for
calculating step, impulse, and arbitrary input responses; hence, discussion of these
functions will be postponed until Chapter 4.

There are three properties which determine whether a control system is good or bad,
namely its performance, stability, and robustness. We briefly discussed the implications
of each of these in Chapter 1 using the car-driver example. Now we are well equipped to
define each of these three properties precisely. Let us first consider the performance of a
control system.

2.7 Performance

Performance is all about how successfully a control system meets its desired objectives.
Figure 1.3 showed an example of a closed-loop system's performance in terms of the
maximum overshoot of the actual output, y ( t ) , from the desired constant output, v<y.
More generally, the desired output may be a specific function of time, Vd(0- In such
a case, the difference between the actual output and the desired output, called error,
e(t) = yd(t) — y(0, is an important measure of the control system's performance. If the
error, e(t), becomes zero very rapidly, the control system is said to perform very well.
However, the error of certain control systems may not exactly reach zero for even very
large times. For such systems, another performance parameter is considered important,
namely the steady-state error, ess, defined as the value of the error, e(t), in the limit
t —>• oo. The smaller the magnitude of the steady-state error, \ess\, the better a control
system is said to perform. There are some performance parameters that indicate the speed
of a control system's response, such as the rise time, TT, defined as the time taken by the
output, y ( t ) , to first reach within a specified band, ±e, of the steady-state value, v(oo), the
peak time, Tp, defined as the time taken to reach the first peak (or maximum overshoot),
and the settling time, 7S, defined as the time taken until the output, y ( t ) , finally settles
(or comes closer) to within a specified band, ±e, of its steady-state value, v(oo).

The performance parameters are usually defined for the step response, s ( t ) , of a system,
which implies a constant value of the desired output, y^. Figure 2.31 shows a typical step
response for a control system, indicating the various performance parameters. Obviously,
we assume that the control system reaches a steady-state value in the limit / -> oo. Not
all systems have this property, called asymptotic stability, which we will discuss in the
next section.
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PERFORMANCE 63

0 Tr Tc

Figure 2.31 Step response, s(0, defining a control system's performance

Note that while the swiftness, or alacrity, with which a system responds to a given input
is described by the rise time, TT, the peak time, Tp, and the settling time, Ts, the departure
of the output from its steady-state value is measured by the maximum overshoot, or the
first peak value, Mp, and the accuracy of the control system in reaching a final desired
value, yd, is indicated by the steady-state error, ess. For a second order system (such as
the one considered in Example 2.12) with damping-ratio, g, and natural frequency, &>„,
we can find simple expressions for many of the performance parameters when a unit step
input is applied, given by

(2.125)

(2.126)

and
(2.127)

Equations (2.125)-(2.127) can be obtained from the step response, s(t), of a second-
order system, using Eq. (2.116). Note that when a successful second order control system
reaches its steady-state value asymptotically in the limit t -> oo, then for large times, it
behaves in a manner quite similar to a first order control system with a pole at 5 = — ga)n,
whose output can be expressed as y(t) = j(oo)[l — e\p{—ga)nt}]. Then the settling time
can be determined as the time taken when the y(t) settles to within 2 percent of y(oo),
or 0.02 = Q\p{-ga)nTs}, which gives Ts = -log(0.02)/(s"wn), or Ts = 4/(gcon), which
is the same as Eq. (2.125). In other words, the output, y(t), reaches within 2 percent of
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64 LINEAR SYSTEMS AND CLASSICAL CONTROL

the steady-state value, y(oo) (i.e. e = 0.02) after four leaps of the time-constant, \l{ga)n).
Equation (2.127) can be obtained by using the fact that at the maximum overshoot, or the
first peak value, Mp, the slope of the step response, ds(t)/dt, is zero.

Note that the performance parameters are intimately related to the damping-ratio, g,
and natural frequency, a>n, of a second order control system. If g > 1, a second order
system behaves like a first order system, with an exponentially decaying step response
(see Figure 2.24). Also, you can see from Eqs. (2.125)-(2.127) that the performance
parameters determining the swiftness of response (such as the peak time, Tp) and those
determining the deviation of the response from the desired steady-state value (such as
peak value, Mp) are contradictory. In other words, if we try to increase the swiftness
of the response by suitably adjusting a control system's characteristics (which are given
by £ and con for a second order system), we will have to accept larger overshoots from
the steady-state value, y(oo), and vice versa. How the control system characteristics are
modified to achieve a desired set of performance parameters is an essential part of the
control system design.

The performance of a control system is determined by the locations of its poles in the
Laplace domain. Generally, the poles of a control system may be such that there are a
few poles very close to the imaginary axis, and some poles far away from the imaginary
axis. As may be clear from examining expressions for step or impulse response, such as
Eqs. (2.115) and (2.116), a control system's response is largely dictated by those poles
that are the closest to the imaginary axis, i.e. the poles that have the smallest real part
magnitudes. Such poles that dominate the control system's performance are called the
dominant poles. Many times, it is possible to identify a single pole, or a pair of poles,
as the dominant poles. In such cases, a fair idea of the control system's performance can
be obtained from the damping and natural frequency of the dominant poles, by using
Eqs. (2.125)-(2.127).

The steady-state error, ess, to an arbitrary input is an important measure of control
system performance. Consider a general single-input, single-output closed-loop system
shown in Figure 2.32, where G(s) and H(s) are the transfer-functions of the plant and
the controller (also called compensator), respectively. Such a closed-loop control system
is said to have the controller, H ( s ) , in cascade (or series) with the plant, G(s). (Another
closed-loop configuration is also possible in which H(s) is placed in the feedback path of
(or in parallel with) G(s).) The controller applies an input, U(s), to the plant based upon
the error, E(s) = Y^(s) — Y(s). We saw in Chapter 1 an example of how a controller
performs the task of controlling a plant in a closed-loop system by ensuring that the
plant output, y ( t ) , becomes as close as possible to the desired output, \d(t), as quickly

E(s)v^ H(s)
U(s)

G(s)
Y(s)

Figure 2.32 A single-input, single-output feedback control system with controller transfer function,
H(s), and plant transfer function, G(s)
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PERFORMANCE 65

as possible. In any case, a successful control system must bring y(t} very close to yd(t)
when time t becomes very large, i.e. in the limit that time tends to infinity (t — > oo).
Such a system is called a tracking system, because its output, y(t), continuously tracks
a changing desired output, yd(t). Examples of tracking systems are a telescope tracking
a comet, an antenna tracking a satellite, a missile tracking an aircraft, a rifle-shooter
tracking a pigeon, etc. The error (e(t) = yd(t) — y(t)) which persists in the limit t -» oo
is called the steady-state error, ess. Obviously, the closed-loop system should first be able
to reach a steady -state (i.e. its response, y ( t ) , must be finite and constant in the limit
/ — >• oo) before its steady-state error can be defined (it is like saying you should first
be able to stand, before I can measure your height). An unstable system cannot reach
a steady-state; therefore, there is no point in talking about steady-state error of unstable
systems. We will discuss later what are the precise requirements for stability, but at
present let us confine our discussion to stable closed-loop systems, which we tentatively
define here as those systems in which a bounded yd(t) leads to a bounded y ( t ) , for all
values of t.

Going back to Figure 2.32, we can see that the Laplace transforms of the output, y ( t ) ,
desired output, yd(t), input, u(t), and error, e(t), are given by Y(s), Yd(s), U(s), and
E(s), respectively. Then the steady-state error is expressed as

ess = lim^oo e(;) = lim^oo-C-1 (£(*)) (2.128)

However, we can avoid evaluating the inverse Laplace transform of E(s) to calculate
the steady-state error if we can utilize an important property of the Laplace transform,
namely the final value theorem given by Eq. (2.70), which yields the following result:

ess = lim^oc e(t) = \im^()sE(s) (2.129)

Of course, Eq. (2.129) requires that the limit of e(t) when t -> oo (or of sE(s) when
s -> 0) must exist. Looking at the block-diagram of Figure 2.32, we can express E(s) as
follows:

E(s) - Yd(s) - Y(s) = Yd(s) - G(s)U(s) = Yd(s) - G(s)H(s)E(s) (2.130)

Thus, we can write
E(s) = Yd(s)/[l + G(s)H(s)} (2.131)

On substituting Eq. (2.131) into Eq. (2.129), we get

] (2.132)

Equation (2.132) implies that the steady-state error, ess, depends not only upon the two
transfer functions, G(s) and //C$0, but also on the desired output, Yd(s).
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66 _ LINEAR SYSTEMS AND CLASSICAL CONTROL _

Example 2.16

Consider the closed-loop system of Figure 2.32 with G(s) - (2s2 + 5s + l)/(s2 +
2^ + 3) and H(s) = K, where AT is a constant. Let us determine the steady-state
error of this system if the desired output, y^(t) is (a) a unit step function, us(t),
and (b) a unit ramp function, r(t) = t • us(t). If yd(t) = us(t) then yd(s) = \/s (see
Table 2.1). Hence, the steady-state error is given by Eq. (2.132) as

= lims^0s Yd(s)/[\ + G(s)H(s)] = linw0*OA)/[l + KG(s)]

= !/[! + jriinwoG(s)] (2.133)

where linis_).oG:(5) is called the DC gain of G(5), because it is a property of the
system in the limit 5 — >• 0, or frequency of oscillation, a) — > 0, in the frequency
response G(ico) - something like the direct current which is the limiting case of
alternating current in the limit w — >• 0. Here \ims-^oG(s) = 1/3. Therefore, the
steady-state error to unit step function is

ess - 1/(1 + AT/3) - 3/(3 + AT) (2.134)

The CST of MATLAB provides a useful command called dcgain for calculating the
DC gain of a transfer function, which is used as follows:

»sys= tf(num,den); dcgain(sys) <enter>

where sys is the name of the system's transfer function calculated using the LTI
object sys, and num and den are the numerator and denominator polynomial coef-
ficients (in decreasing powers of 5), respectively, of the system's transfer function.
This command is quite useful when the transfer function is too complicated to be
easily manipulated by hand.

Note that the DC gain of the closed-loop transfer function in Figure 2.32,
G ( s ) H ( s ) / [ \ + G(s)H(s)], is also the steady-state value of the output, y ( t ) , when
the desired output is a unit step function. Hence, the steady-state error to a
step desired output is nothing but £ss = 1 — DC gain of the closed-loop transfer
function.

The steady-state error given by Eq. (2.134) can be decreased by making the
controller gain, K, large. However, for any finite value of AT, we will be left with
a non-zero steady-state error. Also, there is a physical limit upto which K (and the
resulting input, U(s)) can be increased; the larger the value of AT, the greater will be
the control input, U(s), which increases the cost of controlling the system. Hence,
this closed-loop system is not very attractive for tracking a desired output which
changes by a step.

If yd(t) = r ( t ) , then noting that r(t) is the time-integral of us(t), we can get the
Laplace transform, Yd(s) from the real integration property (Eq. (2.68)) as follows:

\/s2 (2.135)
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PERFORMANCE 67

Hence, the steady-state error is given by

e,. = \ims^sYd(s)/[\ + G(s)H(s)] = \im^Qs(l/s2)/(l + KG(s)]

= \/[lims^Qs + sKG(s)] = oo (2.136)

Thus, the steady-state error of the present closed-loop system is infinite when the
desired output is a ramp function, which is clearly unacceptable. An example of
tracking systems whose desired output is a ramp function is an antenna which is
required to track an object moving at a constant velocity. This calls for the antenna
to move at a constant angular velocity, c. Then the desired output of the antenna is
vd(r) -c-r(t).

Let us see what can be done to reduce the steady-state error of system in Example 2.16
when the desired output is either a unit step or a ramp function.

Example 2.17

In a control system, we can change the controller transfer function, H(s), to meet the
desired objectives. This process is called control system design. From Example 2.16,
it is clear that H(s) = K is a bad design for a closed-loop tracking system when
the desired output is changing like a step, or like a ramp. If we can make the
steady-state error to a ramp function finite by somehow changing the system, the
steady-state error to a step function will automatically become zero (this fact is
obvious from Eqs. (2.133) and (2.136)). Let us see what kind of controller transfer
function, H(s), will make the steady-state error to a ramp function finite (or possibly
zero). For Yd(s) = l/s2, the steady-state error is

+ G(s)H(s)]

3)/s[s2 + 2s + 3 + (2s2 + 5s 4- l)H(s)]

(2-137)

If we choose H(s) = K/s, then Eq. (2.137) implies that ess = 3/K, which is a finite
quantity. If H(s) = K/s2 then ess = 0 from Eq. (2.137). For both the choices of
H(s), the steady-state error is zero when yd(t) = us(t). The choice H(s) = K/s2

thus makes the steady-state error zero for both step and ramp functions.

Note that for the closed-loop system of Figure 2.32, the closed-loop transfer function,
Y(s)/Yd(s), can be derived using Eq. (2.131) as follows:

Y(s) = G(s)H(S)E(s) = G(s)H(s)Yd(s)/[l + G(s)H(s)] (2.138)

or
Y(s)/Yd(s) = G(s)H(s)/[l + G(s)H(s)] (2.139)
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68 LINEAR SYSTEMS AND CLASSICAL CONTROL

For single-input, single-output systems such as that shown in Figure 2.32, we can calculate
the closed-loop response, y(t), to a specified function, yd(t), applying the inverse Laplace
transform to Eq. (2.139).

Example 2.18

Let us calculate the response of the closed-loop system in Example 2.17 to a unit
ramp function, yd(t) = r(t) and zero initial conditions, when (a) H(s) = 1/5, and
(b) H(s) = l/s2. Using Eq. (2.139) for H(s) = l/s we can write

Y ( s ) / Y d ( s ) = [(2s2 + 5s + l)/(52 + 2s

[1 + {(2s2 + 5s+ l)/(52 + 2s

= (2s2 + 55 + l)/(53 + 4s2 + 85 4- 1) (2.140)

or

F(5) = (2s2 + 55 + l)yd(s)/(s3 + 4s2 + 8s + 1)

= (2s2 + 5s + l)(l/52)/(53 + 4s2 + 85 + 1) (2.141)

Equation (2.141) can be expressed in a partial fraction expansion as follows:

Y(s) = ki/(s - />,) + k2/(s - P2) + k3/(s - p3) + *4/s + ks/s
2 (2.142)

where p\, p2, and p^ are the poles of the closed-loop transfer function, (252 +
55 + l)/(53 + 452 + 85 + !), and k\, ki, and ^3 are the corresponding residues. &4

and £5 are the residues due to the ramp function, Yd(s) = \/s2. We know that the
poles of the closed-loop transfer function are distinct (i.e. not repeated) because
we used the Control System Toolbox (CST) command damp to get the poles as
follows:

»damp([1 481]) <enter>

Eigenvalue Damping Freq. (rad/sec)
-0.1336 1.0000 0.1336
-1.9332+1.9355i 0.7067 2.7356
-1.9332-1.9355i 0.7067 2.7356

Note that the closed-loop system has a real pole, —0.1336, and a pair of complex
conjugate poles, -1.9332 + 1.9355/, and -1.9332 - 1.9355/. The residues of the
partial fraction expansion (Eq. (2.142)) can be calculated using MATLAB intrinsic
command residue as follows:

»num=[2 51]; den=conv([1 0 0],[1 4 8 1]); <enter>

»[k,p,c]=residue(num,den) <enter>
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k =
-0.0265-0.13011
-0.0265+0.13011
-2.9470
3.0000

0

P =
-1.9332+1.93551
-1.9332-1.93551
-0.1336

0
0

c =

The roots of the denominator polynomial of Eq. (2.141) are contained in the vector
p, while the vector k contains the corresponding residues of Eq. (2.142). The direct
term c is a null vector, because the numerator polynomial is of a degree smaller than
the denominator polynomial in Eq. (2.141). Taking the inverse Laplace transform
of Eq. (2.142), we can express y(r) as follows:

y(t) = k\ exp(/?3r) kst; (t > 0) (2.143)

The error e(t} = y^(t) — y(t), where y^r) = r(t), and y ( t ) is given by Eq.
(2.143) is plotted in Figure 2.33 using MATLAB as follows (we could also have

2.5 -

2 -

1.5 -

0.5

0

H(s) = 1/S

H(s) = 1/S2

J L
0 5 10 15 20 25 30 35 40

f(s)

Figure 2.33 Error, e(f) =/d(0 -y(0/ for the closed-loop systems of Example 2.18 when
yd(0 = r(0
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70 LINEAR SYSTEMS AND CLASSICAL CONTROL

obtained y(t) directly by using the M-file response.m listed in Table 2.4 by speci-
fying a ramp input):

»t=0:0.4:40; y=k(1)*exp(p(1)* t )+k(2)*exp(p(2)* t )+k(3)*exp(p(3)* t )
+k(4)+k(5)*t; e=t-y <enter>

»plot(t,e)

Similarly, when H(s) = 1/5 , the closed-loop transfer function is

Y(s)/YA(s) - (2s2 + 5s + l)/(54 + 253 + 5s2 + 55 + 1) (2.144)

and the inverse Laplace transform applied to Y(s) with Y^(s) = l/s2 yields (you may
verify using MATLAB)

y(t) = ki exp(pif) + fc2exp(/?20 + fc3exp(p3f) + fc4exp(p40 + *5 + k6t; (t > 0)
(2.145)

where Pl = -0.3686+ 1.9158/, P2 = -0.3686 - 1.9158/, p3 = -1.0, p4 = -0.2627,
ki = -0.1352 - 0.1252/, k2 = -0.1352 + 0.1252/, *3 = -0.6667, k4 = 0.9371, k5 = 0,
k6 = 0. The error, e(t) = yd(t) - y(t), for H(s) = l/s2 is also plotted in Figure 2.33.
Note that ess = 3 for H(s) = l/s, and ess = 0 for H (s) = l/s2, as expected from
Example 2.17.

We have seen in Examples 2.16-2.18 that for a plant transfer function, G(5), of a
particular form, the controller transfer function, H(s), must have either one or two poles
at the origin (s = 0) in order to reduce the closed-loop error due to ramp function.
Precisely how many poles H(s) should have to reduce the steady-state error of a closed-
loop system to a particular desired output, yd(t), depends upon the plant transfer function,
G(s), and yd(t). When yd(t) is a ramp function, Eq. (2.132) implies that

G(s)H(s)] = l/[lim5^0U + sG(s)H(s))]

)] (2.146)

Clearly, if we want zero steady-state error when desired output is a ramp function,
then Eq. (2.144) requires that lims^osG(s)H(s) = oo, which is possible only if the
transfer function G(s)H(s) has two or more poles at the origin, 5=0. Since G(s) in
Examples 2.17 had no poles at the origin, we had to choose H(s) with two poles at the
origin (i.e. H(s) = l/s2) to make es& = 0 when jd(0 = r(t). Classical control assigns a
type to a closed-loop system of Figure 2.32 according to how many poles the transfer
function, G(s)H(s), has at the origin. Thus, a type 1 system has exactly one pole of
G(s)H(s) at origin, a type 2 system has exactly two poles of G(s)H(s) at the origin,
and so on. The transfer function, G(s)H(s), is called the open-loop transfer function
of the system in Figure 2.32, because Y ( s ) / Y d ( s ) = G(s)H(s) if the feedback loop is
broken (or opened). We know from the real integration property of the Laplace transform
(Eq. (2.68)) that a pole at the origin results from a time-integration. Hence, it is said in
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