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STABILITY 71

Table 2.5 Steady-state error according to system type for selected desired outputs

Desired Type O Type 1 Type 2
Output, Steady-State Error Steady-State Error Steady-State Error
ycl(’)
Unit step, uy(t) /[T 4 limgg G(s)H (s)] 0 0
Unit ramp, o0 L/ im, o sG(s)H(s) 0
r-ug(t)
Unit parabola, 00 00 1/lims_os>G(s)H (s)
12 ug(t)/2

classical control parlance that the system type is equal to the number of pure integra-
tions in the open-loop transfer function, G(s)H(s). The system of Example 2.16 with
H(s) = K is of type 0, while the system with the same plant, G(s), in Example 2.17
becomes of type 1 with H(s) = 1/s, and of type 2 with H(s) = 1/s2.

Based on our experience with Examples 2.16-2.18, we can tabulate (and you may
verify) the steady-state errors of stable closed-loop systems, according to their type and
the desired output in Table 2.5.

In Table 2.5 we have introduced a new animal called the unit parabolic function, given
by 2. us(t)/2 (also t - r(¢)/2). An example of y4(¢) as a parabolic function is when it is
desired to track an object moving with a constant acceleration (recall that yy(t) = r(t)
represented an object moving with a constant velocity). From Table 2.5, it is evident that
to track an object moving with constant acceleration, the closed-loop system must be at
least of type 2.

2.8 Stability

As stated previously, one of the most important qualities of a control system is its stability.
In Example 2.2 we saw that an inverted pendulum is unstable about the equilibrium point
¢ = n. In addition, while discussing the transfer function in Section 2.4, we saw that a
second order system whose poles have negative real parts (or positive damping-ratio,
¢ > 0) exhibits step and impulse responses with exponentially decaying amplitudes, and
we called such a system stable. While discussing steady-state error, we required that a
closed-loop system must be stable before its steady-state error can be calculated, and
defined stability tentatively as the property which results in a bounded output if the
applied input is bounded. From Examples 2.2 and 2.12, we have a rough idea about
stability, i.e. the tendency of a system (either linear, or nonlinear) to regain its equilibrium
point once displaced from it. While nonlinear systems can have more than one equilibrium
points, their stability must be examined about each equilibrium point. Hence, for nonlinear
systems stability is a property of the equilibrium point. The pendulum in Example 2.2
has two equilibrium points, one of which is unstable while the other is stable. We can
now define stability (and instability) more precisely for linear systems. For simplicity,
we will focus on the initial response of a system (i.e. response to initial conditions when
the applied input is zero), and by looking at it, try to determine whether a linear system is
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72 LINEAR SYSTEMS AND CLASSICAL CONTROL

stable. In this manner, we avoid having to classify the stability of a system according to
the nature of the applied input, since stability is an intrinsic property of the linear system,
independent of the input. There are the following three categories under which all linear
control systems fall in terms of stability:

1. If the real parts of all the poles (roots of the denominator polynomial of the transfer
function) are negative, then the initial response to finite initial conditions tends to
a finite steady-state value in the limit + — oco. Such linear systems are said to be
asymptotically stable. The aircraft of Example 2.10 is asymptotically stable, because
all four poles have negative real parts.

2. If any pole of the linear system has a positive real part, then its initial response to finite
initial conditions will be infinite in magnitude in the limit 1 — oo. Such a system is
said to be unstable.

3. If all the poles of a system have real parts less than or equal to zero, and all the
poles which have zero real parts are simple, i.e. they are not repeated (or multiple)
poles (recall the discussion following Eq. (2.79)), the initial response of the system
to finite initial conditions will keep on oscillating with a finite amplitude in the limit
t — 00. Such a system is said to be stable but not asymptotically stable (because the
response does not tend to an infinite magnitude, but also does not approach a constant
steady-state value in the limit 7 — 00). However, if the poles having zero real part are
repeated (i.e. they are multiple poles with the same imaginary part) the initial response
of the system to finite initial conditions tends to infinity in the limit 1 — oo, and such
a system is said to be unstable. In physical systems, complex poles occur in conjugate
pairs (see Examples 2.10, 2.12). Thus, the only physical possibility of two (or more)
repeated poles having zero real parts is that all such poles should be at the origin (i.e.
their imaginary parts should also be zero).

We can summarize the stability criteria 1-3 by saying that if either the real part of any
one pole is positive, or any one repeated pole has zero real part then the linear system
is unstable. Otherwise, it is stable. A stable linear system having all poles with negative
real parts is asymptotically stable. Using MATLAB you can easily obtain a location
of the poles (and zeros) of a system in the Laplace domain with either the intrinsic
command roots(num) and roots(den), or the Control System Toolbox (CST) commands
pole(sys), zero(sys), or pzmap(sys), where sys is the transfer function LTI object of the
system. From such a plot, it can be seen whether the system is asymptotically stable,
stable (but not asymptotically stable), or unstable, from the above stated stability criteria.
Another MATLAB (CST) command available for determining the poles of a system is
damp(den) (see Example 2.10 for use of damp). Since the poles of a transfer function
can be directly computed using MATLAB, one does not have to perform such mental
calisthenics as the Routh—Hurwitz stability criteria (D’ Azzo and Houpis [2]), which is
a method for predicting the number of poles in the left and right half planes from the
coefficients of the denominator polynomial by laboriously constructing a Routh array (see
D’Azzo and Houpis [2] for details on Routh—Hurwitz stability criteria). Tabular methods
such as Routh—Hurwitz were indispensible before the availability of digital computers
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