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and software such as MATLAB, which can directly solve the characteristic equation
and give the location of the poles, rather than their number in the left and right haif
planes.

We shall further discuss stability from the viewpoint of state-space methods (as opposed
to the classical frequency and Laplace domain methods) in Chapter 3. Before the advent
of state-space methods, it was customary to employ graphical methods in the Laplace or
the frequency domain for determining whether a closed-loop system was stable. The Bode
plot is a graphical method that we have already seen. However, we are yet to discuss
Bode plots from the stability viewpoint. Other graphical methods are the root-locus, the
Nyquist plot, and the Nichols plot. Design using graphical methods is an instructive
process for single-input, single-output, linear, time-invariant systems. Also, sometimes the
graphical methods help in visualizing the results of a multi-variable state-space design
(Chapters 5—7), and in that sense they have an important place in the modern control
system design.

2.9 Root-Locus Method

To understand the root-locus method of stability analysis, reconsider the single-input,
single-output feedback control system of Figure 2.32. The closed-loop transfer func-
tion, Y (s)/Y4(s), given by Eq. (2.139) is said to have a return difference function, 1 +
G (s)H((s), which is the same as the characteristic polynomial of the closed-loop system.
The return difference is a property of the feedback loop, and comes from the fact
that if Y4(s) = 0, then Y(s) = G(s)U(s) and U(s) = —H(s)Y (s); combining these two
equations we can write Y(s) = —G(s)H(s)Y (s), i.e. Y(s) has returned to itself, or
[14+ G(s)H(s)]Y(s) = 0. (The function G(s)H(s) is called the return ratio.) The root-
locus method determine stability simply by investigating whether the return difference
becomes zero for any value of s in the right half of the Laplace domain (i.e. values of
s with positive real parts). If 1 + G(s)H(s) = 0 for some s in the right-half plane, it
implies that there must be a closed-loop pole with positive real part, thus (according to
stability criteria 2) the closed-loop system must be unstable. By drawing a locus of the
each of the roots of the return difference function, 1 + G(s)H(s), as a design parameter
is varied, we can find those values of the design parameter for which the system is stable
(i.e. for which the loci do not enter the right half s-plane). How far away the locus closest
to the imaginary axis is from crossing over into the right half s-plane also indicates how
far away the system is from being unstable — in other words, the stability margin of the
closed-loop system. A pole on the imaginary axis indicates zero stability margin, which
we called the case of stable but not asymptotically stable system in stability criteria 3.
By the same criteria, more than one pole at the origin indicates instability. If we see
the loci of one (or more) poles crossing into the right-half s-plane, or the loci of two (or
more) poles simultaneously approaching the origin, we should realize that the closed-loop
system is heading towards instability.

Constructing a root-locus plot by hand is difficult, and standard classical controls
textbooks, such as D’ Azzo and Houpis [2], contain information about doing so. However,
by using either the intrinsic MATLAB command roots repeatedly for each value of the
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74 LINEAR SYSTEMS AND CLASSICAL CONTROL

design parameter, or the Control System Toolbox (CST) command rlocus the root-locus
plot is very easily constructed. In the CST command rlocus(sys), sys is the LTI object
of the open-loop transfer function, G(s)H (s). The rlocus program utilizes the MATLAB
roots command repeatedly to plot the roots of 1 + KG(s)H(s) as a design parameter, K,
is varied automatically. The design parameter, K, is thus a scaling factor for the controller
transfer function, H(s), and the root-locus shows what happens to the closed-loop poles
as the controller transfer function is scaled to K H (s). The user can also specify a vector
k containing all the values of K for which the roots are to be computed by entering

rlocus(sys,k) at the MATLAB prompt.

Example 2.19

For the closed-loop system of Figure 2.32 with plant, G(s) = (25> + 55 + 1)/(s* +
2s + 3), and controller, H(s) = 1, the root-locus is plotted in Figure 2.34 using the
MATLAB command rlocus when the design parameter, K, is varied from —0.4 to

0.4 as follows:

>>pum=f2 5 1]; den=[1 2 3); k=-0.4:0.02:0.4; GH=tf(num,den);

p= rlocus(GH,k); <enter>

>>plot(p(1,:),‘0’); hold on; plot(p(2,:),‘x’) <enter>

It is clear from Figure 2.34 that both the poles of the closed-loop system have

real part zero when K = —0.4, and then move towards the left as K is increased.
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Figure 2.34 Root-locus plot of the closed-loop system of Example 2.19, as the design param-

eter, K, is varied from —0.4 10 0.4
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For K = —0.4, the two loci are on the verge of crossing into the right half plane.
Hence the closed-loop system is stable for K > —0.4 and unstable for K < —0.4.
The value of K for which both the poles are on the imaginary axis (i.e. real part = 0)
can be calculated by hand for this second order system by finding the characteristic
equation as follows:

1+ KGE)H() =1+ K252 +5s+1)/(s> +25+3) =0 (2.147)

(1+2K)s>+Q2+5K)s+ 3+ K)=0 (2.148)

Note that Eq. (2.148) is the second order characteristic equation, which can be
expressed in terms of the natural frequency, w,, and damping-ratio, ¢, as Eq. (2.82).
The poles with zero real part correspond to a damping-ratio, { = 0. Comparing
Eq. (2.131) with Eq. (2.82) and putting { = 0, we get (2 +5K) =0, or K = —0.4,
for which w, = [(3+ K)/(1 +2K)]'/? = 3.606 rad/s, and the corresponding pole
locations are p;» = *iw, = £3.606i, which are the same as the pole locations in
Figure 2.34 for K = —0.4.

We can find the values of the design parameter K for specific pole locations along the
root-loci using the CST command rlocfind as follows:

>>[k,poles]=rlocfind(sys,p) <enter>

where p is the specified vector containing the pole locations for which values of K
(returned in the vector k) are desired. You can get the value of gain, K, the pole loca-
tion, associated damping, natural frequency, and maximum overshoot of step response by
clicking at any point on the root-locus generated by the command rlocus(sys). Similarly,
the command rlocfind(sys) lets you move a cross-hair along the root-loci with the mouse
to a desired pole location, and then returns the corresponding value of K when you click
the left mouse button. To do this you must first plot a root-locus, and then use rlocfind
on the same plot as follows:

>>rlocus(sys); hold on; rlocfind(sys) <enter>

The CST command riocus is of limited utility in the stability analysis of closed-loop
system, because it merely scales the controller transfer function, H(s), by a factor K.
For the root-locus plot of more general systems, we should use the MATLAB command
roots, as shown in Example 2.20.

Example 2.20

Consider a closed-loop system shown in Figure 2.35. Note that this system is
different from the one shown in Figure 2.32, because the controller, H(s), is in the
feedback path whereas the controller was placed in the forward path, in series (or
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Figure 2.35 A closed-loop system with plant, G(s), and feedback controller, H(s)

cascade) with the plant, G(s), in Figure 2.32. You can show that both the systems
have the same closed-loop transfer function, Y (s)/ Yq4(s), if Z(s) = H(s)Y4(s). The
closed-loop transfer function, Y (s)/ U (s), for the system in Figure 2.35 is derived
in the following steps:

Y(s) = G6)NU(s) — Z(s)] (2.149)
where
Z(s) = H(s)Y(s) (2.150)
Substituting Eq. (2.150) into Eq. (2.149), we get the following expression for Y (s):
Y(s) = G(U(s) — G(s)H(s)Y (5) (2.151)
or
Y(s)/U(s) = G(s)/[1 + G(s)H (s)] (2.152)

Note that the characteristic equation is still given by 1 + G(s)H(s) = 0. For the
present example, let us take G(s) = (252 +5s + 1)/(s> — 25 +3) and H(s) = 1/
(K's + 1). This choice of H(s) allows introducing a pole of G(s)H (s) at a location
that can be varied by changing the design parameter, K. (Introduction of poles
and zeros in the open-loop transfer function, G(s)H (s), through a suitable H(s)
to achieved desired closed-loop performance is called compensation, and will be
studied in Section 2.12.) Let us plot the root-locus of the closed-loop system as
the controller design parameter, K, is varied. Then the closed-loop characteristic
equation is given by

Ks’+B-2K)s?+ B3 +3K)s+4=0 (2.153)

Since H(s) is not merely scaled by K (which was the case in Example 2.19), we
cannot use the MATLAB CST command rlocus to get the root-locus. Instead, the
intrinsic MATLAB command roots is used repeatedly to plot the root-locus as K is
varied from 1.0 to 1.3 as follows:

>>i=1; for k=1:0.02:1.3; r=roots([k 3-2*k 3+3*k 4]); R(i,:)=r’; i=i+i;
end; plot(R,‘x’') <enter>
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