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State-Space Representation

3.1 The State-Space: Why Do | Need It?

In Chapter 1, we defined the state of a system as any set of quantities which must be
specified at a given time in order to completely determine the behavior of the system.
The quantities constituting the state are called the state variables, and the hypothetical
space spanned by the state variables is called the state-space. In a manner of speaking,
we put the cart before the horse — we went ahead and defined the state before really
understanding what it was. In the good old car-driver example, we said that the state
variables could be the car’s speed and the positions of all other vehicles on the road.
We also said that the state variables are not unique; we might as well have taken the
velocities of all other vehicles relative to the car, and the position of the car with respect
to the road divider to be the state variables of the car-driver system. Let us try to under-
stand what the state of a system really means by considering the example of a simple
pendulum.

Example 3.1

Recall from Example 2.2 that the governing differential equation for the motion
of a simple pendulum on which no external input is applied (Figure 2.3) is given
by Eq. (2.8). If we apply a torque, M (¢), about the hinge, O, as an input to the
pendulum, the governing differential equation can be written as

LO® (1) + gsin(6 (1)) = M(1)/(mL) G.D

where 682 (1) represents the second order time derivative of 6(¢), as per our notation
(i.e. d*0(t)/dt*> = 6P (2)). Let the output of the system be the angle, 6(¢), of the
pendulum. We would like to determine the state of this system. To begin, we must
know how many quantities (i.e. state variables) need to be specified to completely
determine the motion of the pendulum. Going back to Chapter 2, we know that
for a system of order n, we have to specify precisely n initial conditions to solve
the governing differential equation. Hence, it must follow that the stare of an nth
order system should consist of precisely n state variables, which must be specified
at some time (e.g. ¢ = 0) as initial conditions in order to completely determine the
solution to the governing differential equation. Here we are dealing with a second
order system — which implies that the state must consist of rwo state variables. Let
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xo(t) = 67(t)
\

The State-Space for
a simple pendulum

>

xy(t) =6(t)

Figure 3.1 The two-dimensional state-space for a simple pendulum (Example 3.1)

us call these state variables x;(¢) and x;(¢), and arbitrarily choose them to be the
following:

x1(t) = 6(1) (3.2)
x2(t) = 0D (r) (3.3)

The state-space is thus two-dimensional for the simple pendulum whose axes are
x1(t) and x,(t) (Figure 3.1).

It is now required that we express the governing differential equation (Eq. (3.1))
in terms of the state variables defined by Egs. (3.2) and (3.3). Substituting Egs. (3.2)
and (3.3) into Eq. (3.1), we get the following first order differential equation:

xy (1) = M(®)/(mL?) — (g/L) sin(xy (1)) G4

Have we rransformed a second order differential equation (Eq. (3.1)) into a
first order differential equation (Eq. (3.4)) by using the state-variables? Not really,
because there is a another first order differential equation that we have forgotten
about — the one obtained by substituting Eq. (3.2) into Eq. (3.3), and written as

X0 = x(0) (3.5)

Equations (3.4) and (3.5) are mwo first order differential equations, called the state
equations, into which the governing equation (Eq. (3.1)) has been transformed. The
order of the system, which is its important characteristic, remains unchanged when
we express it in terms of the state variables. In addition to the state equations
(Egs. (3.4) and (3.5)), we need an output equation which defines the relationship
between the output, 6(r), and the state variables x;(f) and x>(¢). Equation (3.2)
simply gives the output equation as

0(1) = x;(1) (3.6)
The state equations, Egs. (3.4) and (3.5), along with the output equation, Eq. (3.6),

are called the state-space representation of the system.
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Instead of choosing the state variables as #(r) and 6V (¢), we could have selected
a different set of state variables, such as

xi(t) = L6(1) (3.7
and
x2(t) = L8V (1) (3.8)
which would result in the following state equations:

V) = x0)/L (3.9)

V(@) = M(t)/m — gLsin(x(t)/L) (3.10)
and the output equation would be given by

0(t) = x,(t)/L (3.11)

Although the state-space representation given by Egs. (3.9)-(3.11) is different from
that given by Egs. (3.4)—(3.6), both descriptions are for the same system. Hence, we
expect that the solution of either set of equations would yield the same essential character-
istics of the system, such as performance, stability, and robustness. Hence, the state-space
representation of a system is not unigue, and all legitimate state-space representations
should give the same system characteristics. What do we mean by a legitimate state-
space representation? While we have freedom to choose our state variables, we have to
ensure that we have chosen the minimum number of state variables that are required
to describe the system. In other words, we should not have too many or too few state
variables. One way of ensuring this is by taking precisely n state variables, where n is
the order of the system. If we are deriving state-space representation from the system’s
governing differential equation (such as in Example 3.1), the number of state-variables is
easily determined by the order of the differential equation. However, if we are deriving
the state-space representation from a transfer function (or transfer matrix), some poles
may be canceled by the zeros, thereby yielding an erroneous order of the system which
is less than the correct order.

Example 3.2

Consider a system with input, u(¢), and output, y(r), described by the following
differential equation:

Y2 + (b —a)yy V() —ab y(t) = uV (1) — au(r) (3.12)

where a and b are positive constants. The transfer function, Y (s)/U(s), of this
system can be obtained by taking the Laplace transform of Eq. (3.12) with zero
initial conditions, and written as follows:

Y(s)/U(s) = (s —a)/[s* + (b—a)s —ab] = (s —a)/[(s —a)(s + b)]  (3.13)
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In Eq. (3.13), if we cannot resist the temptation to cancel the pole at s = a with the
zero at s = a, we will be left with the following transfer function:

Y()/U(s)=1/(s +b) (3.14)
which yields the following incorrect differential equation for the system:
Y@ +by@) = u() (3.15)

Since the pole cancelled at s = a has a positive real part, the actual system given
by the transfer function of Eq. (3.13) is unstable, while that given by Eq. (3.14) is
stable. Needless to say, basing a state-space representation on the transfer func-
tion given by Eq. (3.14) will be incorrect. This example illustrates one of the
hazards associated with the transfer function description of a system, which can be
avoided if we directly obtain state-space representation from the governing differ-
ential equation.

Another cause of illegitimacy in a state-space representation is when two (or more)
state variables are linearly dependent. For example, if x;(¢t) = 6(r) is a state variable,
then x,(t) = L6O(t) cannot be another state variable in the same state-space representation,
because that would make x; (¢) and x,(¢) linearly dependent. You can demonstrate that with
such a choice of state variables in Example 3.1, the state equations will not be rwo first
order differential equations. In general, for a system of order n, if x;(¢), x2(£), ..., Xp—1(t)
are state variables, then x,(¢) is not a legitimate state variable if it can be expressed as a
linear combination of the other state variables given by

X (1) = cx1(8) + cax2(8) + -+ - + cpo1 Xp—1 (1) (3.16)

where ¢y, ¢, .. ., cp—1 are constants. Thus, while we have an unlimited choice in selecting
state variables for a given system, we should ensure that their number is equal to the
order of the system, and also that each state variable is linearly independent of the other
state variables in a state-space representation.

In Chapter 2, we saw how single-input, single-output, linear systems can be designed
and analyzed using the classical methods of frequency response and transfer function.
The transfer function — or frequency response — representations of linear systems were
indispensable before the wide availability of fast digital computers, necessitating the use
of tables (such as the Routh table [1]) and graphical methods, such as Bode, Nyquist,
root-locus, and Nichols plots for the analysis and design of control systems. As we saw
in Chapter 2, the classical methods require a lot of complex variable analysis, such as
interpretation of gain and phase plots and complex mapping, which becomes complicated
for multivariable systems. Obtaining information about a multivariable system’s time-
response to an arbitrary input using classical methods is a difficult and indirect process,
requiring inverse Laplace transformation. Clearly, design and analysis of modern control
systems which are usually multivariable (such as Example 2.10) will be very difficult
using the classical methods of Chapter 2.

EBSCChost - printed on 10/27/2025 5:57 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use
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In contrast to classical methods, the state-space methods work directly with the govern-
ing differential equations of the system in the time-domain. Representing the governing
differential equations by first order state equations makes it possible to directly solve the
state equations in time, using standard numerical methods and efficient algorithms on
today’s fast digital computers. Since the state equations are always of first order irrespec-
tive of the system’s order or the number of inputs and outputs, the greatest advantage
of state-space methods is that they do not formally distinguish between single-input,
single-output systems and multivariable systems, allowing efficient design and analysis
of multivariable systems with the same ease as for single variable systems. Furthermore,
using state-space methods it is possible to directly design and analyze nonlinear systems
(such as Example 3.1), which is utterly impossible using classical methods. When dealing
with linear systems, state-space methods result in repetitive linear algebraic manipula-
tions (such as matrix multiplication, inversion, solution of a linear matrix equation, etc.),
which are easily programmed on a digital computer. This saves a lot of drudgery that is
common when working with inverse Laplace transforms of transfer matrices. With the
use of a high-level programming language, such as MATLAB, the linear algebraic manip-
ulations for state-space methods are a breeze. Let us find a state-space representation for
a multivariable nonlinear system.

Example 3.3

Consider an inverted pendulum on a moving cart (see Exercise 2.1), for which the
governing differential equations are the following:

(M +m)xP @) +mLOP (1) cos(0(t)) — mLIOV (1) sin(@ (1)) = f(t) (3.17)
mx P (1) cos(0(t)) + mLOP (1) — mg sin(8(r)) =0 (3.18)

where m and L are the mass and length, respectively, of the inverted pendulum,
M is the mass of the cart, (¢) is the angular position of the pendulum from the
vertical, x () is the horizontal displacement of the cart, f(z) is the applied force on
the cart in the same direction as x(¢) (see Figure 2.59), and g is the acceleration
due to gravity. Assuming f(¢) to be the input to the system, and x(¢) and 6(¢) to
be the two outputs, let us derive a state-space representation of the system.

The system is described by rmwo second order differential equations; hence, the
order of the system is four. Thus, we need precisely four linearly independent
state-variables to describe the system. When dealing with a physical system, it is
often desirable to select physical quantities as state variables. Let us take the state
variables to be the angular position of the pendulum, 6(z), the cart displacement,
x(t), the angular velocity of the pendulum, 6V (¢), and the cart’s velocity, xV(z).
We can arbitrarily number the state variables as follows:

x(8) =6(1) (3.19)
x2(t) = x(t) (3.20)
x3(1) =0V (t) (3.21)
x4(t) = xM(r) (3.22)
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From Egs. (3.19) and (3.21), we get our first state-equation as follows:

xV () = x3(1) (3.23)
while the second state-equation follows from Egs. (3.20) and (3.22) as

V(@) = x4(r) (3.24)

The two remaining state-equations are derived by substituting Egs. (3.19)-(3.22)
into Eq. (3.17) and Eq. (3.18), respectively, yielding

xV (@) = gsin(x, (1)/L — x{P () cos(x, (1)) /L (3.25)
x0(t) = [mL/(M + m))[x" (1)) sin(x; (¢))
— [mL/(M + m)]xs"(e) cos(x (1)) + f(6)/(M +m)  (3.26)
The two output equations are given by
6(1) = x1(1) (3.27)
x(t) = x2(t) (3.28)

Note that due to the nonlinear nature of the system, we cannot express the last two
state-equations (Egs. (3.25), (3.26)) in a form such that each equation contains the
time derivative of only one state variable. Such a form is called an explicit form
of the state-equations. If the motion of the pendulum is small about the equilib-
rium point, & = 0, we can linearize Eqs. (3.25) and (3.26) by assuming cos(6(r)) =
cos(x; (1)) = 1, sin(@(r)) = sin(x; (1)) = x;(¢), and [6V ()P sin(@(r)) = [xi" ()]
sin(x,(t)) = 0. The corresponding linearized state equations can then be written in
explicit form as follows:

xV(0) = (M +m)g/(ML))x;(t) — f(t)/(ML) (3.29)
V() = —(mg/M)x (t) + f(1)/M (3.30)

The linearized state-equations of the system, Eqgs. (3.23), (3.24), (3.29), and (3.30),
can be expressed in the following marrix form, where all coefficients are collected
together by suitable coefficient matrices:

X 0 0 1 07[xe@ 0
P ON 0 00 1||x0]|, 0 o
xé”(t) T | M4+ m)g/(ML) 0 0 O x3(r) —1/(ML)
xﬁ”(t) —mg/M 0 00 x4(1) I/M
(3.31)
with the output matrix equation given by
x1 ()
o] _[1 0 0 07| x0 0
[x(r)]‘[o 10 0] x3(1) +[0]f(') (3-32)
x4(t)
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Note that the state-space representation of the linearized system consists of linear
state-equations, Eq. (3.31), and a linear output equation, Eq. (3.32).

Taking a cue from Example 3.3, we can write the state-equations of a general linear
system of order n, with m inputs and p outputs, in the following matrix form:

xV(1) = Ax(1) + Bu(r) (3.33)

and the general output equation is

y(#) = Cx(t) + Du() (3.34)
where X(1) = [x;(2); x2(¢); .. .; x,()]7 is the state vector consisting of n state variables
as its elements, xV(t) = [x}l)(t); xé”(z); w5 x D)1 is the time derivative of the state
vector, u(t) = [u;(t); ux(t); .. .; u, (O is the input vector consisting of r inputs as its
elements, y(t) = [y1(¢); v2(¢); ... yp(t)]T is the output vector consisting of p outputs as

its elements, and A, B, C, D are the coefficient matrices. Note that the row dimension
(i.e. the number of rows) of the state vector is equal to the order of the system, n, while
those of the input and output vectors are r and p, respectively. Correspondingly, for the
matrix multiplications in Egs. (3.33) and (3.34) to be defined, the sizes of the coefficient
matrices, A, B, C, D, should be (n x n), (n x r), (p x n), and (p x r), respectively.
The coefficient matrices in Example 3.3 were all constant, i.e. they were not varying
with time. Such a state-space representation in which all the coefficient matrices are
constants is said to be time-invariant. In general, there are linear systems with coefficient
matrices that are functions of time. Such state-space representations are said to be linear,
but time-varying. Let us take another example of a linear, time-invariant state-space
representation, which is a little more difficult to derive than the state-space representation
of Example 3.3.

Example 3.4

Re-consider the electrical network presented in Example 2.8 whose governing differ-
ential equations are as follows:

Riii(t) + Ralir () — in(1)] = e(r) (3.35)
Li” (t) + [(R\R3 + R\ Ry + RyR3)/(R; + RISV (1) + (1/C)ia (1)
= [R3/(R) + Ry)1e" (1) (3.36)

If the input is the applied voltage, e(t), and the output, y;(¢), is the current in the
resistor Rz (given by i(z) — i,(¢)) when the switch S is closed (see Figure 2.19),
we have to find a state-space representation of the system. Looking at Eq. (3.36),
we find that the time derivative of the input appears on the right-hand side. For a
linear, time-invariant state-space form of Eqgs. (3.33) and (3.34), the state variables
must be selected in such a way that the time derivative of the input, ¢! (¢), vanishes
from the state and output equations. One possible choice of state variables which
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accomplishes this is the following:

x1(t) = ix(t) (3.37)
x2(0) = iV (1) — Rse(t)/[L(R; + R3)] (3.38)

Then the first state-equation is obtained by substituting Eq. (3.37) into Eq. (3.38),
and expressed as

xD(0) = x2(t) + Rae(®)/[L(R) + R3)] (3.39)

Substitution of Eqs. (3.37) and (3.38) into Eq. (3.36) yields the second state-equat-
ion, given by

x(1) = —[(R1Ry + R\Ry + RyR3) /[L(R, + R3)]
x [x2(2) + R3e(t)/L(R; + R3)] — x1()/(LC) (3.40)
The output equation is given by using Eq. (3.35) as follows:
»1(1) = i1 (1) — i2(1) = [e(t) + Ryxi (D)/(Ri + R3) — x1 (1)
= —Ryx;(t)/(R; + R3) + e(t)/(R, + R3) (3.41)

In the matrix notation, Egs. (3.39)—(3.41) are expressed as

V(@) 0 1 x)(1)
V@) | [ =1/(LC) —[(RiRs + RiR2 + R2R3)/IL(Ry + R3)] || x2(r)

Ry /[L(Ry + R3)]
+ [‘[R3(R1 Ry + RiRy + RaR3)/[L(R, + R3)]2] e(t) 3.42)

n®=[~Ri/(Ri+ R3) 0] [;:g;] + 1/(Ry + Ra)e(r) (3.43)

Comparing Egs. (3.42) and (3.43) with Eqgs. (3.33) and (3.34), we can find the
constant coefficient matrices, A, B, C, D, of the system, with the input vector,
u(?) = e(t), and the output vector, y(t) = y;(2).

If we compare Examples 3.3 and 3.4, it is harder to select the state variables in
Example 3.4 due to the presence of the time derivative of the input in the governing
differential equation. A general linear (or nonlinear) system may have several higher-order
time derivatives of the input in its governing differential equations (such as Eq. (2.4)).
To simplify the selection of state variables in such cases, it is often useful to first draw
a schematic diagram of the governing differential equations. The schematic diagram is
drawn using elements similar to those used in the block diagram of a system. These
elements are the summing-junction (which adds two or more signals with appropriate
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x(t) Ix(t)at

Integrator

x(t) Kx(t)

Gain element

x(t) X1(t) = xo(t)

X(1)
Summing junction

Figure 3.2 The state-space schematic diagram elements

signs), and the two transfer elements, namely the gain element (which multiplies a signal
by a constant), and the integrator (which integrates a signal). The arrows are used to
indicate the direction in which the signals are flowing into these elements. Figure 3.2
shows what the schematic diagram elements look like.

Let us use the schematic diagram approach to find another state-space representation
for the system in Example 3.4.

Example 3.5

The system of Example 3.4 has two governing equations, Egs. (3.35) and (3.36).
While Eq. (3.35) is an algebraic equation (i.e. a zero order differential equation),
Eq. (3.36) is a second order differential equation. Let us express Eq. (3.36) in terms
of a dummy variable (so called because it is neither a state variable, an input, nor
output) z(¢), such that

ZP(1) + [(R1Ry + R Ry + RyR3) /IL(Ry + R)1z V(1) + 1/(LC)z(r) = e(1)
(3.44)
where

i2(t) = R3/[L(Ry + R3)]1zV (1) (3.45)

We have split Eq. (3.36) into Egs. (3.44) and (3.45) because we want to elimi-
nate the time derivative of the input, e!"’(¢), from the state-equations. You may
verify that substituting Eq. (3.45) into Eq. (3.44) yields the original differential
equation, Eq. (3.36). The schematic diagram of Egs. (3.44) and (3.45) is drawn in
Figure 3.3. Furthermore, Figure 3.3 uses Eq. (3.35) to represent the output, y;(¢) =
i1(¢#) — i2(r). Note the similarity between a block diagram, such as Figure 2.1, and
a schematic diagram. Both have the inputs coming in from the left, and the outputs
going out at the right. The difference between a block diagram and a schematic
diagram is that, while the former usually represents the input-output relationship as
a transfer function (or transfer matrix) in the Laplace domain, the latter represents
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Figure 3.3 Schematic diagram for the electrical system of Example 3.4

the same relationship as a set of differential equations in time. Note that the number
of integrators in a schematic diagram is equal to the order of the system.

A state-space representation of the system can be obtained from Figure 3.3 by
choosing the outputs of the integrators as state variables, as shown in Figure 3.3.
Then using the fact that the output from the second integrator from the left, x;(z),
is the time integral of its input, x,(t), the first state-equation is given by

V(@) = xa(r) (3.46)

The second state-equation is obtained seeing what is happening at the first summing
Junction from the left. The output of that summing junction is the input to the
first integrator from left, xé”(t), and the two signals being added at the summing
junction are e(t) and —x;(¢)/(LC) — [(RiR3 + R\ Rz + R2R3)/[L(R, + R3)]x2(1).
Therefore, the second state-equation is given by

x30(1) = —x)(t)/(LC) — [(RiR3 + R\R2 + RyR3)/[L(Ri + R3)1x2(1) + e(r)
3.47)
The output equation is obtained by expressing the output, y;(¢) = i;(t) — ix(1),
in terms of the state variables. Before relating the output to the state variables,
we should express each state variable in terms of the physical quantities, i;(r),
i>(t), and e(r). We see from Figure 3.3 that x,(t) = zV(¢); thus, from Eq. (3.45),
it follows that

x2(t) = L(Ry + R3)ir(t)/R3 (3.48)
Then, substitution of Eq. (3.48) into Eq. (3.47) yields

x1(t) = LCle(t) — ia(t)(Ri Ry + Ry Ry + RyR3)/R3 — L(Ry + R3)is" 1)/ Rs)

(3.49)
Using the algebraic relationship among i, (1), i>(t) and e(r) by Eq. (3.35), we can
write the output equation as follows:
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yi(t) = =R R3/IL(R, + R3)*1xa(t) + (1) /(R + R3) (3.50)

In matrix form, the state-space representation is given by

O 0 I ]
Wy | L=1/(LC ~(RiR3 + RiRy + RyR3)/[L(Ri + R3)]
x1 (1) 0
X [xz(z)]+[l]e(t) 3.5D

x1(t)

(1) =[0=RiRs/{L(R + R3))] [w)

:l + 1/(Ry + R3)e(t)  (3.52)

Note the difference in the state-space representations of the same system given
by Eqgs. (3.42), (3.43) and by Egs. (3.51), (3.52). Also, note that another state-
space representation could have been obtained by numbering the state variables
in Figure 3.3 starting from the lefr rather than from the right, which we did in
Example 3.5.

Example 3.6

Let us find a state-space representation using the schematic diagram for the system
with input, u(t), and output, y(t), described by the following differential equation:

YOO + a1y VO + -+ ay V() +apy(0)
= bu™ () + byt V@) + -+ buV @) + boult) (3.53)

Since the right-hand side of Eq. (3.53) contains time derivatives of the input, we
should introduce a dummy variable, z(¢#), in a manner similar to Example 3.5,
such that

2 + a2 4+ @iV () + aoz(t) = u) (3.54)
and
bz (1) 4+ by 2" V@) + -+ b2V () + boz () = y(1) (3.55)

Figure 3.4 shows the schematic diagram of Egs. (3.54) and (3.55). Note that
Figure 3.4 has n integrators arranged in a series.

As in Example 3.5, let us choose the state variables to be the integrator outputs,
and number them beginning from the right of Figure 3.4. Then the state-equations
are as follows:

V() = x,00) (3.56a)

V() = x3(r) (3.56b)
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Figure 3.4 Schematic diagram for the controller companion form of the system in Example 3.6

X2 (6) = xn (1) (3.56¢)
xV (1) = ~[@p-1%,(8) + AnXp1 (8) + - - - + aox1 (1) —u(t)]  (3.56d)

The output equation is obtained by substituting the definitions of the state variables,
namely, x;(t) = z(t), x2(t) = zV@), ..., x,(t) = 2" ~V(¢) into Eq. (3.55), thereby
yielding

y(t) = box (t) + byxa(t) 4 - - + by_1 X, (1) + bpx{V(1) (3.57)

and substituting Eq. (3.56d) into Eq. (3.57), the output equation is expressed as
follows:

)’(t) = (bO —aobn)xl(t)+(bl h albn)x2(t)+ e +(bn—l - an—lbn)xn(r) +bnu(t)

(3.58)
The matrix form of the state-equations is the following:
x () o 1 0 .. 0 x1(0) 0
M) 0o 0 1 .. 0 x2(1) 0
A 1 SR A A | A R e
x,(;l—)n(’) 0 0 0o ... 1 Xp—1(1) 0
xr(,l)(l) —ay —a; —az ... —ap_\ X, (1) 1
(3.59)
and the output equation in matrix form is as follows:
xi (1)
x2(1)
y(t) = [(by — apby) (by —a1by) ... (bp_y — an-1bp)] . + byu(t) (3.60)
xn (1)
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Comparing Eqgs. (3.59) and (3.60) with the matrix equations Egs. (3.33)
and (3.34), respectively, we can easily find the coefficient matrices, A, B, C, D, of
the state-space representation. Note that the matrix A of Eq. (3.59) has a particular
structure: all elements except the last row and the superdiagonal (i.e. the diagonal
above the main diagonal) are zeros. The superdiagonal elements are all ones, while |
the last row consists of the coefficients with a negative sign, —ag, —ay, ..., —d,—.
Taking the Laplace transform of Eq. (3.53), you can verify that the coefficients
ap, a1, . .., a,—) are the coefficients of the characteristic polynomial of the system
(i.e. the denominator polynomial of the transfer function, Y (s)/U(s)) given by
s" +a,_15"" '+ -+ a;s + ag. The matrix B of Eq. (3.59) has all elements zeros,
except the last row (which equals 1). Such a state-space representation has a name:
the controller companion form. 1t is thus called because it has a special place in the
design of controllers, which we will see in Chapter 5.

Another companion form, called the observer companion form, is obtained as
follows for the system obeying Eq. (3.53). In Eq. (3.53) the terms involving deriva-
tives of y(¢) and u(t) of the same order are collected, and the equation is written
as follows:

Y@@ = by O] + a1y (0) = byt "V (1) |
+ -+ 1y V@) = bV ()] + lagy (1) — bou(t)] = 0 (3.61)

On taking the Laplace transform of Eq. (3.61) subject to zero initial conditions, we
get the following:

'Y (5) = bpU ()] + 8" an1 Y (5) = by U (s)] :
+ -+ sla ¥ (s) = biU )] + [aoY () — boU ()] = 0 (3.62) |

Dividing Eq. (3.61) by s” leads to

Y(s) = byU(s) + a1 U(s) = @yt Y($))/s + - + [BIUS) — a1 Y (5)]/5" !
+ [boU (s) — ao¥ (5)]/5" (3.63) §

We can draw a schematic diagram for Eq. (3.63), using the fact that the multi-
plication factor 1/s in the Laplace domain represents an integration in time. |
Therefore, according to Eq. (3.63), [b,—1U(s) — a,—1Y(s)] must pass through one
integrator before contributing to the output, Y (s). Similarly, [b;U(s) — a1Y (s)]
must pass through (n — 1) integrators, and [bpU(s) — aoY (s)] through »n inte-
grators in the schematic diagram. Figure 3.5 shows the schematic diagram of
Eq. (3.63).

On comparing Figures 3.4 and 3.5, we see that both the figures have a series of |
n integrators, but the feedback paths from the output, y(¢), to the integrators are
in opposite directions in the two figures. If we select the outputs of the integrators
as state variables beginning from the left of Figure 3.5, we get the following state-
equations:
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Figure 3.5 Schematic diagram for the observer companion form of the system in Example 3.6

xV(t) = —apx, (t) + (bo — aobn)u(t)

@) = x1(t) — arx, (1) + (b1 — arba)u(r)

(3.64)
X2 (8) = Xa2(1) = Gp—2%n (1) + (b2 — Gn—2ba)u(t)
x{0(1) = —an-1x4(t) + (bt — n_1by)
and the output equation is
y(@) = xu(t) + bpu(t) (3.65)

Therefore, the state coefficient matrices, A, B, C, and D, of the observer companion
form are written as follows:

o 0 0 —ap ] (bo — agbs)
1 0 0 - (by — a1by,)
01 0 —ap (b2 - agb,,)
Aol . = .
00 1 —a,_> (bp—2 — ay_2by)
[0 0 0 —an] [ (bn—1 ~ @n_1bn) |
C=(0 0 0 1], D=b, (3.66)

Note that the A matrix of the observer companion form is the transpose of the
A matrix of the controller companion form. Also, the B matrix of the observer
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companion form is the transpose of the C matrix of the controller companion form,
and vice versa. The D matrices of the both the companion forms are the same. Now
we know why these state-space representations are called companion forms: they
can be obtained from one another merely by taking the transpose of the coefficient
matrices. The procedure used in this example for obtaining the companion forms of
a single-input, single-output system can be extended to multi-variable systems.

Thus far, we have only considered examples having single inputs. Let us take up an
example with multi-inputs.

I Example 3.7

Consider the electrical network for an amplifier-motor shown in Figure 3.6. It is
desired to change the angle, 8(¢), and angular velocity, oW (1), of a load attached
to the motor by changing the input voltage, e(?), in the presence of a torque, 7, (1),
applied by the load on the motor. The governing differential equations for the
amplifier-motor are the following:

Li"(0) + (R + Ro)i(1) +abdV (1) = Kae(1) (3.67)
19(2)(1‘) + bé(l)(t) _ ai(t) — "TL(’) (368)

where J, R, L, and b are the moment of inertia, resistance, self-inductance, and
viscous damping-coefficient of the motor, respectively, and a is a machine constant.
Ry and K, are the resistance and voltage amplification ratio of the amplifier.

Since the loading torque, 7, (t), acts as a disturbance to the system, we can
consider it as an additional input variable. The input vector is thus given by u(?) =
le(t); TL(£)]7. The output vector is given by y(t) = [0(1); 6V (1)]7. We see from
Eqs. (3.67) and (3.68) that the system is of third order. Hence, we need three state
variables for the state-space representation of the system. Going by the desirable
convention of choosing state variables to be physical quantities, let us select the state
variables as x;(f) = (1), xa(t) = 8V (¢), and x3(t) = i(t). Then the state-equations
can be written as follows:

i(t)

—F Kae(t) : Motor

nm( )e(t)

- Amplmer l.

Figure 3.6 Amplifier-motor circuit of Example 3.7
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