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140 STATE-SPACE REPRESENTATION

xV () = x2(1) (3.69)

x0() = =6/ DHx2 @) + @/ D)x3(0) — TL@)/J (3.70)

x5 (1) = —(a/L)xa(t) — [(R + Ro)/Llx3(t) + (Ka/L)e(t) (3.71)
and the output equations are

0@) = x1(2) (3.72)
6V = x,(r) (3.73)
In matrix form, the state-equation and output equations are written as Eqgs. (3.33)

and (3.34), respectively, with the state-vector, x(t) = [x(¢); x2(t); x3(t)]7 and the
following coefficient matrices:

0 1 0 0 0
A=10 —-b/J a/l ;o B= 0 -1/J 1
0 —a/L —(R+ Ry)/L Ka/L 0
1 00 00
c=[1 0 %) o]0 0] ar

3.2 Linear Transformation of State-Space
Representations

Since the state-space representation of a system is not unique, we can always find another
state-space representation for the same system by the use of a state transformation. State
transformation refers to the act of producing another state-space representation, starting
from a given state-space representation. If a system is linear, the state-space representa-
tions also are linear, and the state transformation is a linear transformation in which the
original state-vector is pre-multiplied by a constant transformation matrix yielding a new
state-vector. Suppose T is such a transformation matrix for a linear system described by
Eqgs. (3.33) and (3.34). Let us find the new state-space representation in terms of T and
the coefficient matrices, A, B, C, D. The transformed state-vector, x'(¢), is expressed as
follows:

xX'(t) = Tx(1) (3.75)

Equation (3.75) is called a linear state-transformation with transformation matrix, T. Note
that for a system of order n, T must be a square matrix of size (n x n), because order
of the system remains unchanged in the transformation from x() to x’(¢). Let us assume
that it is possible to transform the new state-vector, x’(z), back to the original state-vector,
x(t), with the use of the following inverse transformation:

x(t) = T~ X' (1) (3.76)
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LINEAR TRANSFORMATION OF STATE-SPACE REPRESENTATIONS 141

Equation (3.76) requires that the inverse of the transformation matrix, T~!, should exist (in
other words, T should be nonsingular). Equation (3.70) is obtained by pre-multiplying
both sides of Eq. (3.75) by T~!, and noting that T T~! =L To find the transformed
state-equation, let us differentiate Eq. (3.76) with time and substitute the result, xV (1) =
T-'x'V(r), along with Eq. (3.76), into Eq. (3.33). thereby yielding

T '¥V(1) = AT 'X () + Bu(®) (3.77)

Pre-multiplying both sides of Eq. (3.77) by T, we get the transformed state-equation as
follows:
* (1) = TAT™'X' (1) 4 TBu(1) (3.78)

We can write the transformed state-equation Eq. (3.78) in terms of the new coefficient
matrices A’, B, C', D', as follows:

X V() = A'X (1) + B'u(r) (3.79)

where A’ = TAT™!, and B’ = TB. Similarly, substituting Eq. (3.76) into Eq. (3.34) yields
the following transformed output equation:

y() = C'X' (1) + D'u@@) (3.80)

where ¢’ = CT™!, and D’ = D.

There are several reasons for transforming one state-space representation into another,
such as the utility of a particular form of state-equations in control system design (the
controller or observer companion form), the requirement of transforming the state vari-
ables into those that are physically meaningful in order to implement a control system,
and sometimes, the need to decouple the state-equations so that they can be easily solved.
We will come across such state-transformations in the following chapters.

Example 3.8

We had obtained two different state-space representations for the same electrical
network in Examples 3.4 and 3.5. Let us find the state-transformation matrix, T,
which transforms the state-space representation given by Eqs. (3.42) and (3.43) to
that given by Egs. (3.51) and (3.52), respectively. In this case, the original state-
vector is X(1) = [i2(); il" (t) — Rze(t)/{L(R, + R3)}]”, whereas the transformed
state-vector  is  X'(t) = [LC{e(r) — ia(1)(R1 Ry + R1 Ry + RyR3)/ Ry — LilP (1)
(R{ + R3)/R3); i»(t)L(R; + R3)/R3]7. The state-transformation matrix, T, is of
size (2 x 2). From Eq. (3.69), it follows that

LC{e(t) — i2(t)(R\R3 + R\ Ry + RyR3)/R3 — Lis" (1)(R, + R3)/Rs)
ir(t)L(Ry + R3)/R3

— Tn T|2 iz(l‘) (3 81)
Ty T || i$P(t) — Rse(®)/{L(R; + R3)} o
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142 STATE-SPACE REPRESENTATION
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where Ty, T, T5;, and T>> are the unknown elements of T. We can write the
following rwo scalar equations out of the matrix equation, Eq. (3.81):

LCe(t) — LCi>(t)(R\ Ry + RiR2 + RaR3)/Rs — L*Ci{’(t1)(R) + R3)/R3
= Tiiia(t) + Tiali3" (1) — Rae(t)/{L(R, + R3)}] (3.82)
i2()L(Ry + R3)/Rs = Tnyia(t) + Toalis" (1) — Rse(t)/{L(Ry + R3)}]  (3.83)
Equating the coefficients of i,(¢) on both sides of Eq. (3.82), we get
T)) = —LC(R\R3 + Ri Ry + RyR3)/R; (3.84)
Equating the coefficients of e(t) on both sides of Eq. (3.82), we get
T, = —L’C(Ry + R3)/ Ry (3.85)

Note that the same result as Eq. (3.85) is obtained if we equate the coefficients
of i;” (z) on both sides of Eq. (3.82). Similarly, equating the coefficients of corre-
sponding variables on both sides of Eq. (3.83) we get

T2 = L(R) + R3)/R;3 (3.86)
and

Ty =0 (3.87)
Therefore, the required state-transformation matrix is

T = [—LC(R1R3 + RiR; + R;R3)/R;  —L*C(Ri + R3)/Rs

L(R; + R3)/R; 0 ] (3.38)

With the transformation matrix of Eq. (3.88), you may verify that the state-space
coefficient matrices of Example 3.5 are related to those of Example 3.4 according
to Egs. (3.79) and (3.80).

Example 3.9

For a linear, time-invariant state-space representation, the coefficient matrices are
as follows:

1 27, 1 o7, _ ) _
A=[_3 _1]’ B—[O 1], C=[1 2; D=[0 0] (3.89)

If the state-transformation matrix is the following:

-1 1
T=[_1 —1] (3.90)

let us find the transformed state-space representation. The first thing to do is to check
whether T is singular. The determinant of T, |T| = 2. Hence, T is nonsingular and
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LINEAR TRANSFORMATION OF STATE-SPACE REPRESENTATIONS 143

its inverse can be calculated as follows (for the definitions of determinant, inverse,
and other matrix operations see Appendix B):

o , -1 17 1~
T =adi(D/ITI=1/2) | _,| =W/D| | _, (3.91)

Then the transformed state coefficient matrices, A’, B, C’, D', of Egs. (3.79)
and (3.80) are then calculated as follows:

, o -1 1 1 20[-1 =1} [ 12 772
A_.TAT’—(I/Z)[_I _1“_3 _1” i _1]—[_3/2 ,1/2}

(3.92)
B’:TB:[:i _i][(l) ?}:[:} _” (3.93)
C=CT ' =1/2[1 2][‘"i :i]zn/z —3/2] (3.94)
D=D=[0 0] (3.95)

It will be appreciated by anyone who has tried to invert, multiply, or find the
determinant of matrices of size larger than (2 x 2) by hand, that doing so can be a
tedious process. Such calculations are easily done using MATLLAB, as the following
example will illustrate.

Example 3.10

Consider the following state-space representation of the linearized longitudinal
dynamics of an aircraft depicted in Figure 2.25:

v V(1) —0.045 0.036 —-32 -2 v(t)
aP@)y | | -04 -3 -0.3 250 alt)
oy | T 0 0 0 1 8@)
aR(d) 0.002 —0.04 0.001 =32 ]| q®
0 0.1
~30 0 8(1)
+ 0 0 [u(t)] (3.96)
—-10 0
v(t)
yvi)t _ [0 0 1 O] a@) 0 0] 8@
[w)]“[o 0 0 1] 6(1) +[0 0][#(1)] 3:97)
q(t)
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where the elevator deflection, 8(t) (Figure 2.25) and throttle position, p(t) (not
shown in Figure 2.25) are the two inputs, whereas the change in the pitch angle, 6(¢),
and the pitch-rate, q(t) = 6V (¢), are the two outputs. The state-vector selected to
represent the dynamics in Eqs. (3.96) and (3.97) is x(¢t) = [v(t); a(t); 6(1); q(t)]T,
where v(t) represents a change in the forward speed, and a(t) is the change in the
angle of attack. All the changes are measured from an initial equilibrium state of
the aircraft given by x(0) = 0. Let us transform the state-space representation using
the following transformation matrix:

1 -1 0 0
0 0 -2 0
-3.5 1 0o -1
0 0 22 3

(3.98)

You may verify that T is nonsingular by finding its determinant by hand, or using
the MATLAB function detr. The state-transformation can be easily carried out using
the intrinsic MATLAB functions as follows:

>>A=(-0.045 0.036 -32 -2; -0.4 -3 -0.3 250; 0 0 0 1; 0.002 -0.04 0.001

-3.2]; <enter>
>>B=[0 0.1;-30 0;0 0;-10 0]; C=[0 0O 1 O; O O O 1]; D=zeros(2,2); <enter>
>>T=[{1 -1 00; 00 -20; -3.510 -1; 00 2.2 3]; <enter>

>>Aprime=T*A*inv(T), Bprime=T*B, Cprime=C*inv(T) <enter>

Aprime =
-4.3924 -77.0473 -1.3564 -84.4521
0 -0.7333 (4] -0.6667
4.4182 40.0456 1.3322 87.1774
0.1656 -2,6981 0.0456 -2.4515
Bprime =
30.0000 0.1000
0 0
-20.0000 -0.3500
-30.0000 0
Cprime =
0 -0.5000 (o] 0
0 0.3667 0 0.3333

and DY is, of course, just D. The transformed state coefficient matrices can be obtained
in one step by using the MATLAB Control System Toolbox (CST) command ss2ss.
First, a state-space LTI object is created using the function ss as follows:

>> sysi=ss(A,B,C,D) <enter>

a =
x1 x2 x3 x4
x1 -0.045 0.036 -32 -2
x2 -0.4 -3 -0.3 250
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LINEAR TRANSFORMATION OF STATE-SPACE REPRESENTATIONS 145

x3 0 0 0 1
x4 0.002 -0.04 0.001 -3.2
b =
u1l u2
x1 0 0.1
x2 -30 0
x3 0 0
x4 -10 0
C =
x1 X2 x3 x4
yi 0 0 1 0
y2 0 0 0 1
d =
ut u2
y1 0 0
y2 0 0

Continuous-time model.

Then, the function ss2ss is used to transform the LTI object, sysl, to another }
state-space representation, sys2:

>>sys2 = ss2ss (sysi1,T) <enter>

a =
x1 X2 X3 X4
X1 -4.3924 -77.047 -1.3564 -84.452
x2 0 -0.73333 0 -0.66667
X3 4.4182 40.046 1.3322 87.177
x4 0.1656 -2.6981 0.0456 -2.4515
b =
ut u2
x1 30 0.1
X2 0 0
x3 -20 -0.35
x4 -30 0
C =
x1 x2 x3 X4
y1 0 -0.5 0 0
y2 0 0.36667 0 0.33333
d =
ut u2
y1 0 0
y2 0 0

Continuous-time model.
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