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146 STATE-SPACE REPRESENTATION

Since a system’s characteristics do not change when we express the same system
by different state-space representations, the linear state transformations are also called
similarity transformations. Let us now see how we can obtain information about a
system’s characteristics — locations of poles, performance, stability, etc. — from its state-
space representation.

3.3 System Characteristics from State-Space
Representation

In Chapter 2, we defined the characteristics of a system by its characteristic equation,
whose roots are the poles of the system. We also saw how the locations of the poles
indicate a system’s performance — such as natural frequency, damping factor, system
type — as well as whether the system is stable. Let us see how a system’s characteristic
equation can be derived from its state-space representation.

The characteristic equation was defined in Chapter 2 to be the denominator polynomial
of the system’s transfer function (or transfer matrix) equated to zero. Hence, we should
first obtain an expression for the transfer matrix in terms of the state-space coefficient
matrices, A, B, C, D. Recall that the transfer matrix is obtained by taking the Laplace
transform of the governing differential equations, for zero initial conditions. Taking the
Laplace transform of both sides of the matrix state-equation, Eq. (3.33), assuming zero
initial conditions (i.e. x(0) = 0) yields the following result:

sX(s) = AX(s) + BU(s) (3.99)
where X(s) = L[x(¢)], and U(s) = L{u(#)]. Rearranging Eq. (3.99), we can write
(sI — A)X(s) = BU(s) (3.100)

or
X(s) = (sI — A)"'BU(s) (3.101)

Similarly, taking the Laplace transform of the output equation, Eq. (3.34), with Y(s) =
Lly(1)], yields
Y(s) = CX(s) + DU(s) (3.102)

Substituting Eq. (3.101) into Eq. (3.102) we get
Y(s) = C(sI — A)~'BU(s) + DU(s) = [C(sI — A)"!'B + DU(s) (3.103)

From Eq. (3.103), it is clear that the transfer matrix, G(s), defined by Y(s) = G(s)U(s),
is the following:
G(s) =C(sI—A)'B+D (3.104)

Equation (3.104) tells us that the transfer matrix is a sum of the rational matrix
(i.e. a matrix whose elements are ratios of polynomials in s), C(sI — A)~!'B, and the
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SYSTEM CHARACTERISTICS FROM STATE-SPACE REPRESENTATION 147

matrix D. Thus, D represents a direct connection between the input, U(s), and the
output, Y(s), and is called the direct transmission matrix. Systems having D = 0 are
called strictly proper, because the numerator polynomials of the elements of G(s) are
smaller in degree than the corresponding denominator polynomials (see the discussion
following Eq. (2.1) for the definition of strictly proper single variable systems). In
Example 2.28, we had obtained the characteristic equation of a multivariable system
from the denominator polynomial of G(s). Hence, the characteristic polynomial of
the system must be related to the denominator polynomial resulting from the matrix,
C(sI—A)"'B.

Example 3.11

For a linear system described by the following state coefficient matrices, let us
determine the transfer function and the characteristic equation:

I 2 1
A-—[_z 1:|, B—[O]’ C=[1 1}, D=0 (3.105)

The inverse (sI — A)~! is calculated as follows:
(sI—A)'= adj(sI — A)/|(sT — A)| (3.106)
where the determinant |(sI — A)| is given by

-2

el =mi= [(s; " =D

]:(s—1)2+4=52~2s+5 (3.107)

and the adjoint, adj(sI — A), is given by

: - =27 Je-1n 2
adj(sI—A)_.[ ) (5—1)] _[ _2 (s—])] (3.108)

(See Appendix B for the definitions of the inverse, adjoint, and determinant.) Substi-
tuting Egs. (3.107) and (3.108) into Eq. (3.106) we get

(sI — A)_[ = []/(52 — 254+ 5)] [(S:zl) ’ E 1)] (3.109)

Then the transfer matrix is calculated as follows:

-1 __ 2 s—1 2
CGI-A)" =[1/(s° =25 + 9] I 1][ ) (s—l)]
=[1/(> =25+ 9](s —3) (s+1)] (3.110)
CGI—A)'B = [1/(s* — 25 + 5)][(s — 3); (s+l)][é]

=(s—3)/(s>=2s+5) (3.111)
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148 STATE-SPACE REPRESENTATION

The conversion of a system’s state-space representation into its transfer matrix is
easily carried out with the MATLAB Control System Toolbox’s (CST) LTI object
function ¢f as follows:

>>gys = tf(sys) <enter>

Example 3.12

Let us convert the state-space representation of the aircraft longitudinal dynamics
(Example 3.10) given by Eqgs. (3.96) and (3.97) into the transfer matrix of the
system, as follows:

>>gys1=tf(sysi) <enter>

Transfer function from input 1 to output...
-10s"2-29.25s-1.442
A I e
$"4+6.2455"3+19.95"2+1.003s+0.7033

-10873-29.25572-1.4425-5.293e-016

$°4+6.245s5"3+19.9s"72+1.003s+0.7033

Transfer function from input 2 to output...
0.0002s+0.0022
A B e
5°4+6.2455°3+19.95"2+1.0035+0.7033

0.0002s~2+0.0022s+3.671e-019

$°4+6.2455°3+19.95"2+1.003s+0.7033

Note that the single-input, single-output system of Example 3.11, the transfer function
has a denominator polynomial s? — 2s + 5, which is also the characteristic polyno-
mial of the system (see Chapter 2). The denominator polynomial is equal to |(s1 — A)]
(Eq. (3.107)). Thus, the poles of the transfer function are the roots of the characteristic
equation, |(sI — A)| = 0. This is also true for the multivariable system of Example 3.12,
where all the elements of the transfer matrix have the same denominator polynomial.
Using linear algebra, the characteristic equation of a general, linear time-invariant system
is obtained from the following eigenvalue problem for the system:

Avk = Akvk (3 1 12)

where A, is the kth eigenvalue of the matrix A, and v, is the eigenvector associated with
the eigenvalue, A, (see Appendix B). Equation (3.112) can be written as follows:

AM—-A)ywv=0 (3.113)
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SYSTEM CHARACTERISTICS FROM STATE-SPACE REPRESENTATION 149

For the nontrivial solution of Eq. (3.113) (i.e. v # 0), the following must be true:

(AL —-A) =0 (3.114)

Equation (3.114) is another way of writing the characteristic equation, whose the roots

EBSCOhost -

are the eigenvalues, A. Hence, the poles of the transfer matrix are the same as the
eigenvalues of the matrix, A. Since A contains information about the characteristic
equation of a system, it influences all the properties such as stability, performance
and robustness of the system. For this reason, A is called the system’s state-dynamics
matrix.

Example 3.13

For the state-space representation of the electrical network derived in Examples 3.4
and 3.5, let us substitute the numerical values from Example 2.8 (R; = R; = 10
ohms, R, =25 ohms, L =1 henry, C = 107% farad) and calculate the transfer
functions and eigenvalues for both the state-space representations.

The state-space representation of Example 3.4 yields the following state coeffi-
cient matrices:

0 1 0.5 '
A_[_loﬁ ¢30], B_-[_ls], C=[-0.5 0]; D=005 (3.115)

while the state-space representation of Example 3.5 has the following coefficient
matrices: '
r |0 1] r {01, , B _ ,
A "[_]06 __30:]’ B —[1]~ C ={0 0.251; D =0.05
(3.116)

Either using Eq. (3.104) by hand, or using the CST LTI object function, #f, we can
calculate the respective transfer functions as follows:

>>A=[0 1;-1e6 -30]; B=[0.5; -15]; C=[-0.5 0]; D=0.05;sys1=ss(A,B,C,D);
sysi=tf(sys1) <enter>

Transfer function:
0.05s"2+1.25s+5e004

§"2+30s+1e006

>> A=[0 1;-1e6 -30]; B=[0; 1]; C=[0 -0.25]; D=0.05;sys2=ss(A,B,C,D);
sys2=tf(sys1) <enter>

Transfer function:
0.05s"2+1.25s+5e004

s°2+30s+1e006

Note that the two transfer functions are identical, as expected, because the two I,'
state-space representations are for the same system. The characteristic equation is
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150 STATE-SPACE REPRESENTATION

obtained by equating the denominator polynomial to zero, i.e. s2 + 30s + 10% = 0.
Solving the characteristic equation, we get the poles of the system as follows:

>>roots([1 30 1e6]) <enter>

ans =
-1.5000e+001 +9.9989e+002i
-1.5000e+001 -9.9989e+002i

which agree with the result of Example 2.8. These poles should be the same as the
eigenvalues of the matrix, A(= A’), obtained using the intrinsic MATLAB function
eig as follows:

>>eig([0 1;-1e6 -30}) <enter>

ans =
-1.5000e+001 +9.9989e+002i
-1.5000e+001 -9.9989e+002i

Example 3.13 shows that the system’s characteristics are unchanged by using different
state-space representations.

Example 3.14

Consider the following two-input, two-output turbo-generator system [2]:

C—18.4456  4.2263 -—2.2830 0.2260 0.4220 —0.0951
—4.0977 -6.0706  5.6825 -0.6966 -—1.2246  0.2873
1.4449 14336 —-2.6477 0.6092  0.8979 —0.2300

A= —0.0093 0.2302 -0.5002 -0.1764 -6.3152  0.1350
—0.0464 —-0.3489  0.7238  6.3117 —0.6886  0.3645
| —0.0602 —0.2361 0.2300 0.0915 -0.3214 —-0.2087
[ —0.2748 3.1463
—0.0501 —9.3737

B = —0.1550 7.4296

0.0716  —4.9176
—-0.0814 —10.2648
0.0244 13.7943

C= 0.5971 -0.7697 4.8850 4.8608 -9.8177 -—8.8610
“13.1013 93422 -5.6000 —-0.7490 2.9974 10.5719

[0 O] (3.117)

D 0 0

I
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SYSTEM CHARACTERISTICS FROM STATE-SPACE REPRESENTATION 151

The eigenvalues and the associated natural frequencies and damping factors of the
system are found by using the MATLAB command damp(A) as follows:

>>damp (A) <enter>

Eigenvalue Damping Freq. (rad/sec)
-2.3455e-001 1.0000e+000 2.3455e-001
-3.4925e-001+6.3444e+0001 5.4966e-002 6.3540e+000
-3.4925e-001-6.3444e+0001 5.4966e-002 6.3540e+000
-1.0444e+000 1.0000e+000 1.0444e+000
-1.0387e+001 1.0000e+000 1.0387e+001
-1.5873e+001 1.0000e+000 1.5873e+001

Note that there are four real eigenvalues, and a pair of complex conjugate eigenvalues.
All the eigenvalues (i.e. poles) have negative real parts, implying an asymptoti- §
cally stable system from the stability criteria of Chapter 2. Also from Chapter 2, the
damping factors associated with all real eigenvalues with negative real parts are 1.0,
since such eigenvalues represent exponentially decaying responses. Only complex
conjugate eigenvalues have damping factors less than 1.0. These eigenvalues repre-
sent an oscillatory response. If it were possible to decouple the state-equations by the
use of a state transformation, such that the each of the transformed state-equations
is in terms of only one state variable, then each eigenvalue would represent a partic-
ular mode in which the system can respond. Hence, there are six modes in this sixth
order system, consisting of four real (or first order) modes, and a second order mode
defined by a pair of complex conjugate eigenvalues. Note that the second order mode
has a relatively small damping factor (0.055). The transfer matrix, G(s), defined by
Y (s) = G(s)U(s), of this two-input, two-output system, is written as follows:

G(s) = [G(s) Ga(s)] (3.118)
where Y(s) = G (s)U;(s) + Ga2(s)Ua(s), with U,(s) and U,(s) being the two |§
| inputs. G;(s) and Ga(s) are usually obtained using the CST LTI objects ss and

tf as follows:

>>syst=ss(A,B,C,D); syst=tf(syst) <enter>

Transfer function from input 1 to output...
0.04829s"5+1.876s5"4+1.9495°3-1228s"2-5762s-2385

$°6+28.245°5+258.35"4+14685"3+82145"2+8801s+1631

-0.4919575+9.4835"4-49.055"3+551.65"2-939.65+907.6

$"6+28.245"°5+258.35"4+14685"3+8214s"2+8801s5+1631
Transfer function from input 2 to output...

0.029155"5+1.2895°4-0.30415"3-2.388e0045"2-8.,29e005s
-9.544e005
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