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152 STATE-SPACE REPRESENTATION

$°6+28.245°5+258.35"4+14685"3+82145"2+88015+1631

-0.6716s"5+804.55°4+2.781e0045"3+8.085e004s"2+1.214e006s
+1.082e006

$°6+28.245°5+258.35"4+1468s"3+82145"2+88015+1631

Therefore,
Gi(s)

_[(0.04829s° + 1.8765* + 1.949s% — 122852 — 57625 — 2385) /d(s)
" 1(—0.49195° 4 9.4835* — 49.055> + 551.65% — 939.65 +907.6)/d (s)

G (s)

_ [(0.029155° +1.289s5% —0.304 153 — 2.388 x 10%5° — 8.29 x 10°s —9.544 x 10°) /d(s)
T [(—0.6716s° +804.55* +27810s> + 808552 + 1.214 x 10° + 1.082 x 10%) /d(s)

3.119)
where

d(s) = (s® +28.24s° + 258.3s* + 1468s> + 821452 + 8801s + 1631) (3.120)

For brevity, the coefficients have been rounded off to four significant digits. If
the MATLAB’s long format is used to report the results, a greater accuracy is
possible. Note that all the elements of the transfer matrix G(s) have a common
denominator polynomial, whose roots are the poles (or eigenvalues) of the system.
This is confirmed by using the coefficients of d(s) rounded to five significant digits
with the intrinsic MATLAB function roots as follows:

>>roots([1 28.238 258.31 1467.9 8214.5 8801.2 1630.6]) <enter>

ans =

-15.8746
-10.3862
-0.349146.3444i
-0.3491-6.34441
-1.0444

-0.2346

3.4 Special State-Space Representations:
The Canonical Forms

In Section 3.1 we saw how some special state-space representations can be obtained,
such as the controller and observer companion forms. The companion forms are members
of a special set of state-space representations, called canonical forms. In addition to
the companion forms, another canonical form is the Jordan canonical form, which is
derived from the partial fraction expansion of the system’s transfer matrix as described
below. In Section 3.3, we saw how the transfer matrix can be obtained from a state-space
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SPECIAL STATE-SPACE REPRESENTATIONS: THE CANONICAL FORMS 153

representation. Now we will address the inverse problem, namely deriving special
state-space representations from the transfer matrix. For simplicity, consider a single-input,
single-output system with the transfer function given by the following partial fraction
expansion:
Y(s)/U(s) =ko+ki/(s = p1) +hka/(s = p2) - + ki /(s = pi) + ki1 /(s — p)°
+ o kin /(s = p)" T b ka/ (5 = pa) (3.121)

where n is the order of the system, and all poles, except s = p;, are simple poles. The
pole, s = p;, is of multiplicity (m + 1), i.e. (s — p;) occurs as a power (m + 1) in the
transfer function. Let us select the state-variables of the system as follows:

Xi(s)/U(s) =1/(s = p1); Xa(s)/U(s) = 1/(s — p2); .. .2

Xiam® /U () =1/(s = p)" 5.0 Xa()/Us) = 1/(s = p)  (3.122)
Taking the inverse Laplace transform of Eq. (3.122), we get the following state-equations:

V(@) = prxi () + u()
Xél)(f) = paxo(t) + u(t)

x,.“’(t) = p;x;(t) + u(t)

X,-(i)l (t) = x;i (1) + pixip (1)

(D

Xitm (1) = Xigm-1(t) + piXipm(t) (3.123)

x{0(t) = puxa(t) + u(r)
and the output equation is given by

y() = kix(t) + koxo(t) + - 4+ kixi (t) + kigp1xi41(2)
+ -+ k[-e‘-m-xi+m(t) + -+ kn-xn(t) + kOu(t) (3124)
(Note that in deriving the state-equations corresponding to the repeated pole, s = p;,
we have used the relationship X;11(s) = X;/(s — p;), Xis2(s) = X;41/(s — p;), and so

on.) The state-space representation given by Eqs. (3.123) and (3.124) is called the Jordan
canonical form. The state coefficient matrices of the Jordan canonical form are, thus, the
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154 STATE-SPACE REPRESENTATION

following:

[py O ... 0 0 O 0 0 0 ]
0 p 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 i 00 LT 0 0; 0

A_|0 O 1 p O 0 0 0

10 o0 1 pi 0 0 0
0 0 0. 0.0 ] L.Pi 0
|0 0 0 0 O 0 0 Pn

------------------------------- T

B=[1 1 1.0 oo 0 1 1]

C=[k k kn |

D=k, (3.125)

Note the particular structure of the A matrix in Eq. (3.125). The system’s poles (i.e. the
eigenvalues of A) occur on the main diagonal of A, with the repeated pole, p;, occurring
as many times as the multiplicity of the pole. A square block associated with the repeated
pole, p;, is marked by a dashed border, and is known as the Jordan block of pole, p;.
The diagonal below the main diagonal — called the subdiagonal — of this block has all
elements equal to 1. All other elements of A are zeros. The matrix B also has a particular
structure: all elements associated with the simple poles are ones, the first element of the
Jordan block of repeated pole, p; — shown in dashed border ~ is one, while the remaining
elements of the Jordan block of p; are zeros. The elements of matrix C are simply the
residues corresponding to the poles in the partial fraction expansion (Eq. (1.121)), while
the matrix D is equal to the direct term, kg, in the partial fraction expansion. If a system
has more than one repeated poles, then there is a Jordan block associated with each
repeated pole of the same structure as in Eq. (3.125). If none of the poles are repeated,
then A is a diagonal matrix. The Jordan canonical form can be also obtained similarly
for multi-input, multi-output systems.

Example 3.15

Let us find the Jordan canonical form of the following system:

Y(s)/U(s) = (s + 1)/[(s = D*(s — 3)] (3.126)
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The partial fraction expansion of Eq. (3.126) is the following: ‘
Y(s)/U(s) =1/(s =3) = 1/(s — 1) — 1 /(s — 1)? (3.127) §

Comparing Eq. (3.127) with Eq. (3.121) and using Eq. (3.125), we get the following &
Jordan canonical form: ‘

(3.128) §

The Jordan block associated with the repeated pole, s = I, is shown in dashed
borders. ‘

While Jordan canonical form is an easy way of obtaining the state-space representation
of a system, it has a major drawback: for the Jordan canonical form to be a practical
representation, all the poles of the system (i.e. eigenvalues of A) must be real. After all,
the purpose of having state-space representations is to practically implement a control
system, using electrical circuits or mechanical devices. A state-space representation with
complex coefficient matrices cannot be implemented in a hardware (have you ever heard
of a complex electrical resistance, or a spring with complex stiffness?). To make some
sense out of Jordan canonical form for a system with complex poles, we can combine the
partial fractions corresponding to each pair of complex conjugate poles, p;» =0 L iw,
into a second order real sub-system as follows:

ki/(s — p1) + ka/(s — p2) = 2|las — (ao + ﬂw)]/(s2 —~ 265 +0>+w?)  (3.129)

where k| ; = « £ i are the residues corresponding to the poles, p; . Remember that the
residues corresponding to complex conjugate poles are also complex conjugates. Since the
complex poles always occur as complex conjugates, their combination into real second
order sub-systems using Eq. (3.129) will lead to a real state-space representation. From
Eq. (3.129), it can be shown that the real Jordan block in A corresponding to a pair of
complex conjugate poles, p; 2 = o L iw, is a 2 x 2 block with real parts on the diagonal,
and the imaginary parts off the diagonal as follows:

—w ol (3.130)

The MATLAB Control System Toolbox function canon provides an easy derivation
of the canonical forms, using the methodology presented above. The function is used as
follows:

>>[csys,T] = canon(sys, ‘type’) <enter>

where sys is an LTI object of the system (either transfer matrix, or state-space), ‘type’
is either ‘modal’ for Jordan canonical form, or ‘companion’ for the observer companion
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form, csys is the returned canonical form, and T is the returned state-transformation matrix
which transforms the state-space representation from sys to csys (T is meaningful only
if sys is a state-space representation, and not the transfer matrix). The matrix A of the
Jordan canonical form obtained using canon has each pair of complex eigenvalues in a
real Jordan block given by Eq. (3.130).

EBSCOhost -

Example 3.16

For the system of Example 3.14, let us obtain the canonical forms. For the Jordan
canonical form, the MATLAB (CST) command canon is used as follows:

>> syst=ss(A, B, C, D); [jsyst,T] = canon(syst, ‘modal’) <enter>

a_
x1
x1 -15.873
x2 0
x3 0
x4 0
x5 0
x6 0
X6
x1 0
x2 0
x3 4]
x4 0
x5 0
x6 -0.23455
b:
ul
x1 0.50702
x2 -0.36131
x3 0.092163
x4 0.13959
x5 -0.17417
x6 0.021513
C:
x1
yl 0.86988
y2 -7.9857
X6
yt -9.885
y2 10.406
d:
ul
yt 0
y2 0

Continuous-time model.

x2 x3

0 0
-10.387 0

0 -0.34925
0 -6.3444
0 0

0 0
u2

-20.055
30.035

-5.577
13.23
8.7113
14.876
x2 x3
2.3105 2.7643
-11.128 -0.19075

x4

0

0

6.3444
-0.34925
0

0

x4
6.459
-0.78991

1.0444

O OO0 00X

x5
2.8803
3.2141
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Columns 1 through 2

-1.67367664062877
0.93271689676861
0.00703777816771
-0.01678546516033
0.01434336645020
0.00550594309107

Columns 3 through
-0.64877657888967
1.30954638127904
0.06144994008648
-0.12409538851455
1.10820137234454
0.01382978986462

Columns 5 through
0.15933965118530
-0.32626410503493
-0.00622411675595
-1.41411419523105
-0.08538437917204
-0.01967206771160

0.82071823417532
-1.37011949477365
0.01235017857500
0.05675504485937
0.32743224909474
-0.03421867428744

0.02185375479665
0.00863637157274
1.42410332092227
0.03844790932243
0.07909786976484
-0.04137902672467

-0.03863614709032
0.08854860917358
0.07244625298095
0.02977656775124
0.21852854369639
1.01709518519537

Note the 2 x 2 real Jordan block in A corresponding to the complex eigenvalues |
| D34 = —0.34925 £ 6.3444i. Also, note that the corresponding terms in the matrices §
B and C are also real. The transformation matrix, T, has been reported in long format |
for greater accuracy in calculations. Next, we calculate the observer canonical form
of the system as follows:

>>[csyst, T] = canon(syst, ‘companion’) <enter>

x1 x2 x3 x4 x5
x1 9.6034e-015 -1.3017e-013 1.6822e-012 -4.8772e-011 1.5862e-009
x2 1 5.6899e-014 1.6964e-012 -3.4476e-011 7.7762e-010
x3 7.7716e-016 1 2.6068e-013 -4.6541e-012 1.0425e-010
x4 4.5103e-017 2.4997e-015 1 -8.3311e-013 1.9014e-011
x5 1.5179e-018 2.7864e-016 5.5303e-015 1 2.1528e-012
x6 5.421e-020 1.0103e-017 1.9602e-016 -3.2543e-015 1
X6
x1 -1630.6
x2 -8801.2
x3 -8214.5
x4 -1467.9
x5 -258.31
x6 -28.238
L b =
ul u2
x1 1 945.61
x2 0 1128.8
x3 0 201.9

EBSCChost - printed on 10/27/2025 5:57 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use



158 STATE-SPACE REPRESENTATION

x4 0 36.481
x5 0 4.0669
X6 0 0.1451

x1 x2 x3 x4 x5

y1 0.04829 0.51209 -24.985 -725.97 20044

y2 -0.49194 23.374 -581.99 11670 -2.1041e+005
x6

yi -3.488e+005
y2 3.5944e+006

ui u2
yi O 0

y2 0 0

Continuous-time model.

T =

Columns 1 through 2

0.36705413565042 -1.48647885543276
0.48941400292950 0.46746500786628
0.06992034388180 0.10572273608335
0.01406952155565 0.02165321186650
0.00129963404010 0.00361303652580
0.00003944900770 0.00015766993850

Columns 3 through 4

3.02790751537344 -2.47039343978461
10.58180159205530 -2.47081762640110
1.83987823178029 -0.61525593744681
0.34386037047772 -0.10310276871196
0.04003837042044 -0.00922166413447
0.00145527317768 -0.00028916486064

Columns 5 through 6
-1.39030096046515 63.91103372168656
-2.11561239460537 73.88483216381728
-0.39195667361013 13.19012284392485
-0.09863522809937 2.36076797272696
-0.01208541334668 0.26314010184181
-0.00043627032173 0.00940569645931

In the A matrix of the computed observer companion form, all the elements
except those in the last column and the subdiagonal are negligible, and can be
assumed to be zeros. We can also derive the controller companion form merely by
taking the transposes of A, B, and C of the observer form computed above. The
controller companion form is thus denoted by the coefficient set (AT, CT, BT, D).

The Jordan canonical form is useful for decoupling the state-equations of systems with
distinct eigenvalues; such systems have a diagonal A matrix of the Jordan canonical form.
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SPECIAL STATE-SPACE REPRESENTATIONS: THE CANONICAL FORMS 159

The companion forms are useful in designing control systems. However, a great disadvan-
tage of the companion forms (both controller and observer) is that they are ill-conditioned,
which means that the eigenvalues and eigenvectors of the matrix A are very sensitive to
perturbations in the elements of A. This results in large inaccuracies in the computed
eigenvalues (and eigenvectors), even if there is a small error in calculating A. Since a
system’s characteristics are governed by the eigenvalues and eigenvectors of A, an ill-
conditioned A matrix is undesirable. The ill-conditioning of companion forms generally
gets worse as the order of the system increases. Hence, we should normally avoid using
the companion forms as state-space representations, especially for large order systems.
MATLAB assigns a condition number to each square matrix. The condition number indi-
cates how close a matrix is to being singular (i.e. determinant of the matrix being zero). A
larger condition number means that the matrix is closer to being singular. With MATLAB
we can assess the condition number of a square matrix, A, using the command cond(A). If
cond(A) is small, it indicates that A is well-conditioned. If cond(A) is very large, it implies
an ill-conditioned A. Whenever we try to invert an ill-conditioned matrix, MATLAB issues
a warning that the matrix is ill-conditioned and the results may be inaccurate.

Example 3.17

Let us compare the condition numbers for the Jordan canonical form and the observer
companion form derived in Example 3.16. The condition number for the Jordan
canonical form is calculated by first retrieving the state coefficient matrices from
the LTI object jsyst using the Control System Toolbox (CST) function ssdata, and
then applying cond to matrix A as follows:

>> [Aj,Bj,Cj,Dj]=ssdata(jsyst); cond(Aj) <enter>

ans =
67.6741

while the condition number for the companion form is the following:
>> [Ac,Bc,Cc,Dc]=ssdata(csyst); cond(Ac) <enter>

ans =
9.1881e+004

The condition number for the companion form is, thus, very large in comparison
to that of the Jordan canonical form, confirming that the former is ill-conditioned.
Why is a companion form ill-conditioned while the Jordan canonical form is not?
The answer lies in all the diagonal elements, except the last, being zeros in the
matrix A of the companion forms. In contrast, the Jordan form’s matrix A has a
populated diagonal, i.e. none of the diagonal elements are zeros.

For conversion of a transfer matrix into a state-space representation, you can use the
MATLAB (CST) LTI object ss. However, the state-space conversion of a transfer matrix
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