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160 STATE-SPACE REPRESENTATION

with ss results in the controller companion form, which we know to be ill-conditioned.
Hence, we should avoid converting a transfer matrix to state-space representation using
the command ss, unless we are dealing with a low order system.

3.5 Block Building in Linear, Time-Invariant
State-Space

Control systems are generally interconnections of various sub-systems. If we have a state-
space representation for each sub-system, we should know how to obtain the state-space
representation of the entire system. Figure 2.55 shows three of the most common types
of interconnections, namely the series, parallel, and feedback arrangement. Rather than
using the transfer matrix description of Figure 2.55, we would like to depict the three
common arrangements in state-space, as shown in Figure 3.7.

The series arrangement in Figure 3.7(a) is described by the following matrix equations:

x{"(t) = Aix; (1) + Bju(r) (3.131)
yi(#) = Cix(7) + Dru(r) (3.132)
xy (1) = Asxa () + Bay (1) (3.133)
y(#) = Caxa(r) + Doy () (3.134)

where the state-space representation of the first sub-system is (A, By, C, D;), while
that of the second subsystem is (A,, B,, C,, D). The input to the system, u(¢), is also

@ u(t) yi(D) y(t)
x,(0(t) = A%, ()+B,u(t) . Xo{(1) = Agx,(1)+BoY, (1)
" yi(0) = Cyxi(D+Dyu() ¥(t) = Cox(1)+D,Y, (1) g
®) ; %, (1) = Ayxy (D+Bquy(t) yi(t)
Uill) =1 yy() = Cyxy(H)+Dyuy(t)
y(t)
%x,(0(1) = Asxo(1)+Boun(t) t
o) T y2(t) = Coxp(D+Dun(f) (0
© val) xe(1) = A Xg(1)+B Iy a(t)-y(D)] %, = A (sBpuiy | Y
u(t) = CeXo(t)+D[ya(t)y(1)] y(1) = Cpxy(t)+Dou(t)

u(t)

Figure 3.7 Three common arrangements of sub-systems models in state-space
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the input to the first sub-system, while the system’s output, y(¢), is the output of the
second sub-system. The output of the first sub-system, y;(¢), is the input to the second
sub-system. Substitution of Eq. (3.132) int Eq. (3.133) yields:

x5V (1) = Agxa (1) + BoCix, (1) + BaDyu(r) (3.135)
and substituting Eq. (3.132) into Eq. (3.134), we get
y(@) = Cxx2(7) + DCix,(2) + D2Dyu(z) (3.136)

If we define the state-vector of the system as x(r) = [x{ (¢); x3 (1)]”, Egs. (3.131) and
(3.135) can be expressed as the following state-equation of the system:

A 0 B
Dy | I ,
X(t) = [BzCl Az]X(t)+ [Ble:lum (3.137)

and the output equation is Eq. (3.136), re-written as follows:
y(@) = [D2C; Calx(¢) + D2Dyu(r) (3.138)

The MATLAB (CST) command series allows you to connect two sub-systems in series
using Egs. (3.137) and (3.138) as follows:

>>3ys = series(sysi,sys2) <enter>

The command series allows connecting the sub-systems when only some of the outputs
of the first sub-system are going as inputs into the second sub-system (type help series
(enter) for details; also see Example 2.28). Note that the sequence of the sub-systems
is crucial. We will get an entirely different system by switching the sequence of the
sub-systems in Figure 3.7(a), unless the two sub-systems are identical.

Deriving the state and output equations for the parallel connection of sub-systems
in Figure 3.7(b) is left to you as an exercise. For connecting two parallel sub-systems,
MATLAB (CST) has the command parallel, which is used in a manner similar to the
command series.

The feedback control system arrangement of Figure 3.7(c) is more complicated than
the series or parallel arrangements. Here, a controller with state-space representation
(Acs Be, Ce, D) 18 connected in series with the plant (Ap, Bp, Cp,Dp) and the feedback
loop from the plant output, y(¢), to the summing junction is closed. The input to the
closed-loop system is the desired output, y4(¢). The input to the controller is the error
[ya(t) — y(¢)], while its output is the input to the plant, u(t). The state and output equations
of the plant and the controller are, thus, given by

% V(1) = Apxp (1) + Byu(r) (3.139)
y(t) = Cpxp (1) + Dyu(r) (3.140)
X (1) = AeXe(t) + Belya(t) — y(1)] (3.141)
u(t) = Cexc(t) + Delya(r) — y()] (3.142)
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Substituting Eq. (3.142) into Eqs. (3.139) and (3.140) yields the following:
X% "(1) = Apxp (1) + ByCeXe() + BpDelya(r) — y()] (3.143)
¥(@) = Gxp (1) + DpCexe(r) + DpDe[ya(t) — y ()] (3.144)
Equation (3.144) can be expressed as
(@) = A+ DpDo) "' [CpXp(#) + DpCeXe(1)] + A + DyDe) 'DpDeya(t)  (3.145)

provided the square matrix (I + DpDe) is non-singular. Substituting Eq. (3.145) into
Eq. (3.143) yields the following state-equation of the closed-loop system:

xD (1) = Ax(1) + Bya(?) (3.146)
and the output equation of the closed-loop system is Eq. (3.145) re-written as:
y(t) = Cx(t) + Dyq(2) (3.147)
where
— [ %O |.
o= [xc(r)]’
Ap — BD(I+DpDe)"'Cp  ByCe — BpDe(I + DpDe) ' D, Ce
—B.(I+ Dp,D.)"'C, Ac — B+ D,Do)'D,C,
C=(0+DD) '[C, D,C.];
_ -1 ) _ | ByDc(I - D)
D=~d+D,D:)" D;D;; B= [ B.(d - D) ] (3.148)

Using MATLAB (CST), the closed-loop system given by Eqgs. (3.146)—(3.148) can be
derived as follows:

>>sys0 = series(sysc,sysp) % series connection of LTI blocks sysc
and sysp <enter>

>>sys1=ss(eye(size(sys0))) % state-space model (A=B=C=0, D=I) of
the feedback block, sys1 <enter>

>>sysCL= feedback(sysO, sys1) % negative feedback from output to
input of sysO <enter>

where sysO is the state-space representation of the controller, sysc, in series with the plant,
sysp, sysl is the state-space representation (A = B = C = 0, D = I of the feedback block
in Figure 3.7(c), and sysCL is the state-space representation of the closed-loop system.
Note that sys0 is the open-loop system of Figure 3.7(c), i.e. the system when the feedback
loop is absent.

Example 3.18

Let us derive the state-space representation of an interesting system, whose
block-diagram is shown in Figure 3.8. The system represents a missile tracking
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Aircraft

X, (1) = Agx,(t) + Bu(t)
Yq(t) = C x,(8) + D u(t)

Yo(t)

xc“)({) =
Up (1) = Cexo (1) + Delyy(1)-y()]

Acxq(t) + Bely,(t)-y(1)]

Controller

Un(1)
e

X' (1) = ApXpn(t) + Bppp()
Y(t) = CXpn() + Dyt (1)

Missile

y(t)

Figure 3.8 Block diagram for the aircraft-missile control system of Example 3.18

a maneuvering aircraft. The pilot of the aircraft provides an input vector, u(z), to
the aircraft represented as (A,, B,, C,, D;). The input vector, u(t), consists of the
aircraft pilot’s deflection of the rudder and the aileron. The motion of the aircraft
is described by the vector, yq(z), which is the desired output of the missile, i.e. the
missile’s motion — described by the output vector, y(¢) — should closely follow that
of the aircraft. The output vector, y(¢), consists of the missile’s linear and angular
velocities with respect to three mutually perpendicular axes attached to the missile’s
center of gravity — a total of six output variables. The state-space representation for |
the missile is (Am, Bm, Cm, Dyy). The missile is controlled by a feedback controller
with the state-space representation (A, B, Ce, D) whose task is to ultimately make

y(t) = ya(?), i.e. cause the missile to hit the maneuvering aircraft.
The matrices representing the aircraft, missile, and controller are as follows:

[ —0.0100
0
0

0.0730

—4.8000
1.5000
0

—0.1000 0 0 0 0 0
—0.4158 1.0250 0 0 0 0
0.0500 —-0.8302 0 0 0 0
0 0 —-0.5600 —1.0000 0.0800 0.0400
0 0 0.6000 —0.1200 —0.3000 O
0 0 —3.0000 0.4000 —0.4700 0O
0 0 0 0.0800 1.0000 O
.-

0

0

0.0001

1.2000

10.0000

o
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(1 00 000 07 [0 0
0 0025 000 00
02500 0000 00
CG=10 00 o010 ®=|0o
0 01 0000 00
(o0 00 010 0] [0 0]
( 04743 0 0.0073 0 0 0
0 ~0.4960 0 0 0 0
A _ | 00368 0 ~0.4960 0 0 0
m=1 0 ~0.0015 0 ~0.0008 0 0.0002
0 0 ~0.2094 0 ~0.0005 0
[ 0 ~0.2094 0 0 0 —0.0005 |
C 0 0 0 10000 07
191.1918 0 0 010000
B_| © 191.1918 0 e _|001000
m=1 0 0 10000 |° ™~ (000100
0 232.5772 0 000010
| 2325772 0 0o | 00000 1
[0 0 07
000
000
Dm=10 100
000
0 0 0
"0 0 0 10 0
0O 0 0 0 10 0
Al 0O 0 0 0o o 10
€110 0 0 -03 0 O
0 -1.0 0 0 =03 0
L 0 0 -10 0 0 -03
0 0 0 0 0 0
0 0 0 0 0 0
B _|0 0 0 0 0 0
<= | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
0.6774 0.0000 0.0052 0.0000 —0.0001 0.0000
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(100000 00000O
C.=|/010000]|; D= 000000}
_001000] {000000
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Note that the aircraft is a seventh order sub-system, while the missile and the ’
controller are sixth order sub-systems. The state-space representation of the entire
system is obtained as follows:

>>sysc=ss(Ac,Bc,Cc,Dc); sysm=ss(Am,Bm,Cm,Dm); sysO = series(sysc,sysm);
<enter>

>>sysi=ss(eye(size(sys0))); <enter>

>>gysCL=feedback(sys0,sys1); <enter>
>>sysa=ss(Aa,Ba,Ca,Da); syst=series(sysa, sysCL) <enter>

a:
x1 X2 x3 x4 x5

X1 0.4743 0 0.0073258 0 0
X2 0 -0.49601 0 0 0
x3 -0.036786 O -0.49601 0 0
x4 -0.0015497 0O -0.00082279 0
x5 0 -0.20939 0 -0.00048754
x6 0.20939 0 -8.2279e-006 O
X7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19

oo NoNel
[eNeNeNe]

0.6774 0.0052 0 0.0001

leNeleNeNoNeNeNelNe NoNoNeNaoNoNe)
[=NeololNeNeReoNolNol
[=NeleoNoNeNeNeNeNeNo oo NN
[eNeoleNoNoRoelNe Nl

e NoeNeNoloNeNolNoNeNoNe)

X6 X7 x8 x9 x10
x1 0 0 0 o0 0
X2 0 191.19 0 0 0
x3 0 0 191.19 0 0
x4 0.00017749 0 0o 1 0
x5 0 0 232.58 0 0
X6 -0.00048754 232.58
X7
x8
x9
x10
x11
X12
x13
x14
x15
x16
x17
x18
x19

OO O =0

0.0001

OO0 OO0OO0O0O0 ! OO O
OCOO0OO0OO0O0OO0OO0OO0 ! OO O
-
[=NeNeoNoRoNoNeNol [eNo N
(=N eNeReNolelNo] e NeNolNeNe
-
e e NeolNeNeNae e RN
—
[oN e}
o
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x12 x13 x14 xi5
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xi2 0
x13 0
x14 0
x15 0
x16 0.0
x17 -4
x18 1.
x19 0 0

x
w
x
H

3
cocoococo -~
cooo-0x
cocoo-o0o
co—-o0o0o0
o~o0o000}

x
(o2
x
o
x
o

<
%

~ooo0o0o

x
coocooo

x
cooococo}
cooooo
coocooo=

—_
>
N
x
w
x

<

w
[=NeNeNeNeNe R
[oNeNeNeNeNo R
=Nl eReNoNo RS
COQCOO0O0O =
QO OO0 0O =

<

w
OO0 O0O —
[eNeNeNeNe ol
COO0OO00 O =
OO OCCOOO0 =

e
-

<
w
coocooo
cooocoof
)

¢ Continuous-time model.

The total system, syst, is of order 19, which is the sum of the individual orders
o of the sub-systems. If the entire system, sysz, is asymptotically stable, the missile §
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