
4
Solving the State-Equations

4.1 Solution of the Linear Time Invariant
State Equations

We learnt in Chapter 3 how to represent the governing differential equation of a system
by a set of first order differential equations, called state-equations, whose number is
equal to the order of the system. Before we can begin designing a control system based
on the state-space approach, we must be able to solve the state-equations. To see how
the state-equations are solved, let us consider the following single first order differential
equation:

(4.1)

where x(t) is the state variable, u(t) is the input, and a and b are the constant coefficients.
Equation (4. 1 ) represents a first order system. Let us try to solve this equation for t > ?o
with the initial condition, x(to) = XQ. (Note that since the differential equation, Eq. (4.1),
is of first order we need only one initial condition to obtain its solution). The solution to
Eq. (4.1) is obtained by multiplying both sides of the equation by exp{— a(t — to]} and
re-arranging the resulting equation as follows:

exp{-a(f - fo)}*(1)(0 - exp{-a(f - t())}ax(t) = exp{-a(f - t0)}bu(t) (4.2)

We recognize the term on the left-hand side of Eq. (4.2) as d/dt[exp{ — a(t — to)}x(t)],
Therefore, Eq. (4.2) can be written as

d/dt[exp{-a(t - t(})}x(t)] = exp{-a(t - t0)}bu(t) (4.3)

Integrating both sides of Eq. (4.3) from to to f , we get

= ('Jtl}
exp{— a(t — to)}x(t) — x(to) = / exp{—a(r — to)}bu(T}dr (4.4)

Jtl}

Applying the initial condition, x(to) — XQ, and multiplying both sides of Eq. (4.4) by
exp{a(t — to}}, we get the following expression for the state variable, x(t):

r<
x ( t ) = Qxp{a(t — t())}xo + / e f l- •bu(r}dx\ (t > to) (4.5)
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172 _ SOLVING THE STATE-EQUATIONS _

Note that Eq. (4.5) has two terms on the right-hand side. The first term, exp{a(f —
to)}xo, depends upon the initial condition, JCQ, and is called the initial response of the
system. This will be the only term present in the response, x(t), if the applied input, u(t),
is zero. The integral term on the right-hand side of Eq. (4.5) is independent of the initial
condition, but depends upon the input. Note the similarity between this integral term
and the convolution integral given by Eq. (2.120), which was derived as the response
of a linear system to an arbitrary input by linearly superposing the individual impulse
responses. The lower limit of the integral in Eq. (4.5) is to (instead of — oo in Eq. (2.120)),
because the input, u(t), starts acting at time to onwards, and is assumed to be zero at
all times t < to- (Of course, one could have an ever-present input, which starts acting
on the system at t = — oo; in that case, to = — oo). If the coefficient, a, in Eq. (4.1) is
negative, then the system given by Eq. (4.1) is stable (why?), and the response given
by Eq. (4.5) will reach a steady-state in the limit t — > oo. Since the initial response of
the stable system decays to zero in the limit / — > oo, the integral term is the only term
remaining in the response of the system in the steady-state limit. Hence, the integral term
in Eq. (4.5) is called the steady-state response of the system. All the system responses to
singularity functions with zero initial condition, such as the step response and the impulse
response, are obtained form the steady-state response. Comparing Eqs. (2.120) and (4.5),
we can say that for this first order system the impulse response, g(t — to), is given by

g(t- t0) = e\p{a(t - t0)}b (4.6)

You may verify Eq. (4.6) by deriving the impulse response of the first order system
of Eq. (4.1) using the Laplace transform method of Chapter 2 for u(t) = 8(t — to) and
X(IQ) = 0. The step response, s(t), of the system can be obtained as the time integral of
the impulse response (see Eqs. (2.104) and (2.105)), given by

= i
Jt

s(t) = ea(t~T)bdT = [exp{a(r - /0)} - U/« (4.7)
JtQ

Note that Eq. (4.7) can also be obtained directly from Eq. (4.5) by putting u(t) = us(t —
t0) and *(fo) = 0.

To find the response of a general system of order n, we should have a solution for each
of the n state-equations in a form similar to Eq. (4.5). However, since the state-equations
are usually coupled, their solutions cannot be obtained individually, but simultaneously
as a vector solution, \(t), to the following matrix state-equation:

= Ax(r) + Bu(f) (4.8)

Before considering the general matrix state-equation, Eq. (4.8), let us take the special case
of a system having distinct eigenvalues. We know from Chapter 3 that for such systems,
the state-equations can be decoupled through an appropriate state transformation. Solving
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_ SOLUTION OF THE LINEAR TIME INVARIANT STATE EQUATIONS _ 173

decoupled state-equations is a simple task, consisting of individual application of Eq. (4.5)
to each decoupled state-equation. This is illustrated in the following example.

Example 4.1

Consider a system with the following state-space coefficient matrices:

Let us solve the state-equations for t > 0 with the following initial condition:

The individual scalar state-equations can be expressed from Eq. (4.8) as follows:

jc[1 }(f) = -3jc,(0 + M(0 (4.11)

x(
2

l}(t) = -2jc2 (f) - u(t) (4.12)

where x\(t) and X2(t} are the state variables, and u(t) is the input defined for t > 0.
Since both Eqs. (4.11) and (4.12) are decoupled, they are solved independently of
one another, and their solutions are given by Eq. (4.5) as follows:

jd(0 = e~3r + / e~3(t~T)u(T)dT\ (t > 0) (4.13)
Jo

x2(t) = - Q-2(!~r}u(T)dr\ (t > 0) (4.14)

Example 4.1 illustrates the ease with which the decoupled state-equations are solved.
However, only systems with distinct eigenvalues can be decoupled. For systems having
repeated eigenvalues, we must be able to solve the coupled state-equations given by
Eq. (4.8).

To solve the general state-equations, Eq. (4.8), let us first consider the case when
the input vector, u(0, is always zero. Then Eq. (4.8) becomes a homogeneous matrix
state-equation given by

x ( 1 )(r)=Ax(0 (4.15)

We are seeking the vector solution, x(0, to Eq. (4.15) subject to the initial condition,
x(?o) = XQ. The solution to the scalar counterpart of Eq. (4.15) (i.e. x^\t) = ax(t)) is
just the initial response given by x ( t ) = exp{a(t — t0)}x0, which we obtain from Eq. (4.5)
by setting u(t) = 0. Taking a hint from the scalar solution, let us write the vector solution
to Eq. (4.15) as

x(0 = exp{A(f - fo)}x(r0) (4.16)
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174 SOLVING THE STATE-EQUATIONS

In Eq. (4.16) we have introduced a strange beast, exp{A(f — to)}, which we will call the
matrix exponential of A(f — to). This beast is somewhat like the Loch Ness monster,
whose existence has been conjectured, but not proven. Hence, it is a figment of our
imagination. Everybody has seen and used the scalar exponential, exp{a(r — to)}, but
talking about a matrix raised to the power of a scalar, e, appears to be stretching our
credibility beyond its limits! Anyhow, since Eq. (4.16) tells us that the matrix exponential
can help us in solving the general state-equations, let us see how this animal can be
defined.

We know that the Taylor series expansion of the scalar exponential, exp{a(f — to)}, is
given by

exp{a(/ - to)} = 1 + a(f - to) + a2(t - t0)
2/2\

+ a\t - r0)
3/3! + • • • + ak(t - t0)

k/k\ + ••• (4.17)

Since the matrix exponential behaves exactly like the scalar exponential in expressing the
solution to a first order differential equation, we conjecture that it must also have the same
expression for its Taylor series as Eq. (4.17) with the scalar, a, replaced by the matrix,
A. Therefore, we define the matrix exponential, exp{A(f — to)}, as a matrix that has the
following Taylor series expansion:

exp{A(/ - to)} = I + A(r - to) + A2(r - r0)
2/2!

+ A3(r - /0)
3/3! + • • • + \k(t - t0)

k/k\ + ••• (4.18)

Equation (4.18) tells us that the matrix exponential is of the same size as the matrix
A. Our definition of exp{A(/ — to)} must satisfy the homogeneous matrix state-equation,
Eq. (4.15), whose solution is given by Eq. (4.16). To see whether it does so, let us
differentiate Eq. (4.16) with time, t, to yield

x(1)(r) = d/dt(exp{A(t - t0)}x(t0)] = d/dt[cxp{\(t - t0)}]x(to) (4.19)

The term d/dt[exp{\(t — to)}] is obtained by differentiating Eq. (4.17) with respect to
time, t, as follows:

d/dt[exp{\(t - to)}]

= A + \2(t - to) + A3(r - r0)
2/2! -I- A4(f - r0)

3/3! + • • • + A*+1 (t - t0)
k/k\ + • • •

= A[I + A(r - t0) + A2(t - t0)
2/2\ + A3(/ - r0)

3/3! + • • • + \k(t - tQ)k/k\ + • • •]

= Aexp{A(f-/0)} (4-20)

(Note that the right-hand side of Eq. (4.20) can also be expressed as [I + A(/ — 1 0 ) +
A2(f - f0)2/2!+A3(r - t0)

3/3\ + • • • + A*(f - t0)
k/k\ + - • -]A = exp{A(r - f0))A, which

implies that Aexp{A(/ - t0)} = exp{A(f - to)}A.) Substituting Eq. (4.20) into Eq. (4.19),
and using Eq. (4.16), we get

x(1)(0 = Aexp{A(r — to)}xo = \x(t) (4.21)
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which is the same as Eq. (4.15). Hence, our definition of the matrix exponential by
Eq. (4.18) does satisfy Eq. (4.15). In Eq. (4.20) we saw that the matrix exponential,
exp{A(f - to)}, commutes with the matrix, A, i.e. Aexp{A(? — fn)} = exp{A(? - fn)}A.
This is a special property of exp{A(f — to)}, because only rarely do two matrices commute
with one another (see Appendix B). Looking at Eq. (4.16), we see that the matrix expo-
nential, exp{A(? — to)}, performs a linear transformation on the initial state-vector, x(?o),
to give the state-vector at time t, x(f). Hence, exp{A(? — to)}, is also known as the state-
transition matrix, as it transitions the system given by the homogeneous state-equation,
Eq. (4.15), from the state, x(?0), at time, to, to tne state x(f), at time, t. Thus, using the
state-transition matrix we can find the state at any time, t, if we know the state at any
previous time, to < t. Table 4.1 shows some important properties of the state-transition
matrix, which you can easily verify from the definition of exp{A(r — /o)K Eq. (4.18).

Now that we know how to solve for the initial response (i.e. response when u(?) = 0)
of the system given by Eq. (4.8), let us try to obtain the general solution, x(/), when the
input vector, u(t), is non-zero for t > ?o- Again, we will use the steps similar to those
for the scalar state-equation, i.e. Eqs. (4.1)-(4.5). However, since now we are dealing
with matrix equation, we have to be careful with the sequence of matrix multiplications.
Pre-multiplying Eq. (4.8) by exp{ — \(t — t0)}, we get

exp{-A(r - r0)}x(1)(0 = exp{-A(r - ?0)}Ax(0 + exp{-A(f - f0)}Bu(/) (4.22)

Bringing the terms involving x(?) to the left-hand side, we can write

exp{-A(f - ?0)}[x(1)(0 - Ax(01 - exp{-A(r - f0)}Bu(0 (4.23)

From Table 4.1 we note that d/dt[e\p{ — A(t — to)}] = -exp{— A(f - to)} A. Therefore,
the left-hand side of Eq. (4.23) can be expressed as follows:

exp{-AU - ?0)}x(1)(0 - exp{-A(f - fo)}Ax(f)

= exp{-A(f - f0)}x (1 )(f) + d/dt[Gxp{-\(t - r0)}]x(r)

-\(t - f0)}x(r)] (4.24)

Hence, Eq. (4.23) can be written as

JA/r[exp{-A(r - t0)}x(t)] = exp{-A(r - f0)}Bu(r) (4.25)

Table 4.1 Some important properties of the state-transition matrix

S. No. Property Expression

1 Stationarity exp{A(?o — to)} = I

2 Commutation with A Aexp{A(r — r0)} = exp{A(r — f0)}A

3 Differentiation with time, t d/dt[exp{A(t — /0)}] = exp{A(? — to)} A.

4 Inverse [exp{A(f - ^o)}]^1 = exp{A(r0 - 01

5 Time-marching exp{A(r - t \ ) } exp{A(f] - t0)} = exp{A(? - r0)}
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