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Integrating Eq. (4.25) with respect to time, from to to t, we get

exp{-A(/ - /0)}x(0 - x(f0) = exp{-A(r - r0)}Bu(r)dr (4.26)

Pre-multiplying both sides of Eq. (4.26) by exp{A(f — to)}, and noting from Table 4.1 that
exp{—A(f — to)} = [exp{A(r — to)}]~1, we can write the solution state-vector as follows:

/"x(f) = exp{A(f — to)}\(to) + I exp{A(f — r)}Bu(r)dr; (/ > to) (4.27)

Note that the matrix equation, Eq. (4.27), is of the same form as the scalar equation,
Eq. (4.5). Using Eq. (4.27), we can calculate the solution to the general matrix state-
equation, Eq. (4.8), for / > to. However, we do not yet know how to calculate the state-
transition matrix, exp{A(r — to)}.

4.2 Calculation of the State-Transition Matrix

If we can calculate the state-transition matrix, exp{A(r — /o)K when the state-dynamics
matrix, A, and the times, to and t > to, are specified, our task of solving the linear state-
equations will simply consist of plugging exp{A(f — to)} into Eq. (4.27) and getting the
solution x(r), provided we know the initial state-vector, x(f0), and the input vector, u(r),
for t > to. As stated at the beginning of Section 4.1, the easiest way to solve a matrix
state-equation is by decoupling the individual scalar state-equations, which is possible only
if the system has distinct eigenvalues. First, let us calculate the state-transition matrix for
such a system.

For a linear system of order n, having n distinct eigenvalues, k\, A.2 A.,,, the eigen-
value problem (see Chapter 3) is written as follows:

Av*=A*v*; ( * = l , 2 , . . . , n ) (4.28)

We know from Chapter 3 that such a system can be decoupled (or diagonalized) by using
the following state-transformation:

x'(r) = Tx(0; T = [v,; v 2 ; . . . ; ¥„]-' (4.29)

and the state-dynamics matrix then becomes diagonalized as follows:

A, 0 0 ... 0
0 X2 0 ... 0

0 0 0 ... A.n

(4.30)
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CALCULATION OF THE STATE-TRANSITION MATRIX 177

You can easily show from the definition of the state-transition matrix, Eq. (4.18), that the
state-transition matrix for the decoupled system is given by

exp{A(f

'exp{A.i( f - f 0 )} 0 0 ... 0
0 exp{A.2(f - fo)} 0 ... 0

0 0 0 . . . exp{XB(f-f0)}
(4.31)

Equation (4.31) shows that the state-transition matrix for a decoupled system is a diagonal
matrix. In general, the state-transition matrix for any transformed system, x'(t) = Tx(r),
can be expressed as

exp{A(f -t0)}

= l + A'(t-t0) + (A')\t-t0)
2/2\ + (A')\t-to)3/3\ + --- + (Af)k(t-t0)

k/kl + ---

= TT"1 + (TATr1)(f - fo) + (TAT"1)2(f - t0)
2/2l

/ 3 ! + - - - + (TAT-1)/c(r-f0)V^! + - - -

(r - f0)2/2! + A3(/ - f0)3/3! + • • • + Ak(t - t 0 ) k / k l + • • -JT"1

1 (4.32)

Example 4.2

Let us calculate the state-transition matrix of the following system, and then solve
for the state-vector if the initial condition is x(0) = [ 1; O]7 and the applied input
is u(t) = 0:

-1 :

The eigenvalues of the system are obtained by solving the following characteristic
equation:

+ 1) -2
|AJ-A| = = (A + 1) (X + 3) + 2 = r + 4A + 5 = 0

1 (A + 3)
(4.34)

which gives the following eigenvalues:

A.i,2 = -2 ± / (4.35)

Note that the negative real parts of both the eigenvalues indicate an asymptotically
stable system. Since the eigenvalues are distinct, the system can be decoupled using
the state-transformation given by Eq. (4.29). The eigenvectors, YI = [un; v2\]

T and
V2 = [vi2', V22]T are calculated from Eq. (4.28). The equation Avi = X.\v\ yields the
following scalar equations:

-v\\ +2t'2i (4.36a)

—v\\ - 3v2\ (4.36b)
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178 SOLVING THE STATE-EQUATIONS

Note that Eqs. (4.36a) and (4.36b) are linearly dependent, i.e. we cannot get the two
unknowns, v\\, and 1*21, by solving these two equations. You may verify this fact
by trying to solve for V[\ and V2\. (This behavior of the eigenvector equations is
true for a general system of order n; only (n — 1) equations relating the eigenvector
elements are linearly independent). The best we can do is arbitrarily specify one
of the two unknowns, and use either Eq. (4.36a) or Eq. (4.36b) - since both give
us the same relationship between v\\ and V2\ - to get the remaining unknown. Let
us arbitrarily choose v\\ = 1. Then either Eq. (4.36a) or (4.36b) gives us vi\ =
(1 + A.0/2 = (-1 + 0/2. Hence, the first eigenvector is v, = [ 1; (-1 + i ) / 2 ] T .
Similarly, the second eigenvector is obtained by 'solving' Av2 = X2V2, yielding the
second eigenvector as ¥2 = [ 1; (— 1 — i ) / 2 ] T . Plugging the two eigenvectors in
Eq. (4.29), we get the state-transformation matrix, T, as

(-1-0/2J ( l + / ) / 2 '

(4.37)
Then the diagonalized state-dynamics matrix, A', is given by

A' TAT-' r*1 °i r (-2+ / ) ° i /A™A = T A T = [ 0 X2J = |_ 0 (-2-0 J (4'38)

and the state-transition matrix for the transformed system is

o, o ] re
(-2+/)'

6 =[ 0 exp(A2oH 0 e<- (4'39)

Note that t0 = 0 in this example. Then from Eq. (4.32) the state-transition matrix
for the original system is given by

r i i ire(-2+/)' o i [0-0/2 -n
~ [(-!+ 0/2 (-1-0/2JL 0 e<-2- ' '>'JL(l+i)/2 ij

[(1 - i)e
[(1

(4.40)
Those with a taste for complex algebra may further simplify Eq. (4.40) by using the
identity ea+lb = efl[cos(&) + i sin(t)], where a and b are real numbers. The resulting
expression for eAr is as follows:

2e-sin,,) 1

L -e~2' sin(r) e~2/[cos(r) - sin(f)] J

The solution, x(0, is then given by Eq. (4.27) with u(0 =0 as follows:

x(0 = [,, (,); ,2(,)f = e-x(O) =
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CALCULATION OF THE STATE-TRANSITION MATRIX 179

The state variables, x\(t) and X2(t), given by Eq. (4.42) are plotted in Figure 4.1.
Note that both the state variables shown in Figure 4.1 decay to zero in about 3 s,
thereby confirming that the system is asymptotically stable.
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Figure 4.1 The calculated state variables, XT (f) and X2(0, for Example 4.2

The method presented in Example 4.2 for calculating the state-transition matrix is
restricted to those systems which have distinct eigenvalues. The intrinsic MATLAB func-
tion expm3 lets you use the diagonalization method for the calculation of the matrix
exponential for systems with distinct eigenvalues as follows:

»eP = expm3(P) <enter>

where P is a square matrix of which the matrix exponential, eP, is to be calculated.
Alternatively, you can use the intrinsic MATLAB function eig as follows to calculate
the eigenvector matrix, V, and the diagonalized matrix, D, with eigenvalues of P as its
diagonal elements:

»[V,D] = eig(P) <enter>

Then use the MATLAB function exp as follows to calculate the matrix exponential of D:

»eD = e x p ( D ) - r o t 9 0 ( e y e ( s i z e ( D ) ) ) <enter>

The MATLAB function exp(D) calculates a matrix whose elements are exponentials of
the corresponding elements of the matrix D. The matrix exponential of D is obtained by
subtracting the off-diagonal elements of exp(D) (which are all ones) from exp(D); this
is done by forming a matrix whose diagonal elements are zeros and whose off-diagonal
elements are all ones-an identity matrix of same size as D, eye(size(D)), rotated by 90
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180 SOLVING THE STATE-EQUATIONS

degrees using the command rot90(eye(size(D))). Finally, the matrix exponential of P can
be obtained as follows, using eP = VeDV"1:

»eP = V*eD*inv(V) <enter>

Example 4.3

Using MATLAB, let us calculate the state-transition matrix for the system in
Example 4.2 for /0 = 0 and t = 2 s. First, let us use the command expmS as follows:

»A=[-1 2; -1 -3]; eAt = expm3(A*2) <enter>

eAt =
9.03246-003 3.3309e-002
-1.66546-002 -2.42766 -002

Now let us use the alternative approach with the command eig as follows:

»[V, D] = eig(A*2) <enter>

V =

8.16506-001 8.16506-001
-4.08256-001 +4.08256-0011 -4.08256-001 -4.08256-0011

D =

-4.00006+000+ 2.00006+0001 0

0 -4.00006+000- 2.00006+0001

Then the state-transition matrix of the diagonalized system is calculated as follows:

»eD = exp(D) - ro t90(eye(s ize(D)) ) <enter>

eD =
-7.62206-003+1.66546-0021 0

0 -7.62206-003 -1.66546-0021

Finally, using the inverse state-transformation from the diagonalized system to the
original system, we get the state-transition matrix, eA/, as follows:

»eAt = V*eD*inv(V) <enter>

eAt =

9.03246-003 3.33096-002 -2.26466-0181
-1.66546-002 -2.42766-002 +1.65056-0181

which is the same result as that obtained using expm3 (ignoring the negligible
imaginary parts). You may verify the accuracy of the computed value of e^ by
comparing it with the exact result obtained in Eq. (4.41) for / = 2 s.
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CALCULATION OF THE STATE-TRANSITION AAATRIX 181

For systems with repeated eigenvalues, a general method of calculating the state-
transition matrix is the Laplace transform method, in which the Laplace transform is taken
of the homogeneous state-equation, Eq. (4.15) subject to the initial condition, x(0) = x()

as follows:
sX(s) - x(0) = AX(s) (4.43)

where X(s) = £[x(t)]. Collecting the terms involving X(s) to the left-hand side of
Eq. (4.43), we get

X(s)

(si - A)X(s) = x(0)

(si - ArVO) = (si -

(4.44)

(4.45)

Taking the inverse Laplace transform of Eq. (4.45), we get the state-vector, x ( t ) , as

x(f) = £~[[X(s)] = £~l[(sl - Ar'xo] = £~][(sl - A)~1]x0 (4.46)

Comparing Eq. (4.46) with Eq. (4.16), we obtain the following expression for the state-
transition matrix:

eA? = jr-«[(5 i_A)-1] (4.47)

Thus, Eq. (4.47) gives us a general method for calculating the state-transition matrix for
/ > 0. The matrix (5! — A)"1 is called the resolvent because it helps us in solving the
state-equation by calculating eAr. If the initial condition is specified at t — to, we would
be interested in the state-transition matrix, exp{A(? — to)}, for t > to, which is obtained
from Eq. (4.47) merely by substituting t by (t — to).

Example 4.4

Consider a system with the following state-dynamics matrix:

A =
-2 I

0 0
0 0

5 '

—3
0

(4.48)

Let us calculate the state-transition matrix and the initial response, if the initial
condition is x(0) = [0; 0; 1 ]r. The eigenvalues of the system are calculated as
follows:

+ 2)
0
0

-1 -5
A 3
0 A

(4.49)

From Eq. (4.49) it follows that the eigenvalues of the system are A] = ^2 = 0, and
A. 3 = —2. Since the first two eigenvalues are repeated, the system cannot be decou-
pled, and the approach of Example 4.2 for calculating the state-transition matrix
is inapplicable. Let us apply the Laplace transform approach given by Eq. (4.47).
First, the resolvent (si — A)~ ! is calculated as follows:
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182 SOLVING THE STATE-EQUATIONS

(si - A)-1 = adj((5l - A)/|5l - A| = l/[52(5 + 2)]

r *2
X 5

0 0 I7

5(5 + 2) 0
|_ (55 + 3) -3(5 + 2) 5(5 + 2) _

=
~l/(5 + 2) 1,

0
0

Taking the inverse Laplace transform
expansions for the elements of (5! —
transition matrix as follows:

l~e-2' (l-e-2 ')/2
eA' = 0 1

|_ 0 0

/[5(5+2)J (55 + 3)/[52(5 + 2)]l

1/5 -3/52 (4.50)
0 1/5 J

of Eq. (4.50) with the help of partial fraction
A)"1 and using Table 2.1, we get the state-

7(1 -e-2')/4 + 3r/2~
-3r

1
; ( f > 0 ) (4.51)

Note that the inverse Laplace transform of 1/5 is us(t) from Table 2.1. However,
since we are interested in finding the state-transition matrix and the response only
for t > 0 (because the response at t = 0 is known from the initial condition, x(0))
we can write £~'(l/5) = 1 for t > 0, which has been used in Eq. (4.51). The initial
response is then calculated as follows:

x(r) = X2(t)
L*3(0_

Note that the term 3t/2
X2(t) keeps on increasi
plot of jcj(0, X2(t), and

10

5

0

-5

-10

-15

= eA'x(0) = -3r
1

; ( r > 0 ) (4.52)

makes x\(t) keep on increasing with time, t > 0. Similarly,
ng with time. This confirms that the system is unstable. A

Jt3(/) is shown in Figure 4.2.
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Figure 4.2 The calculated state variables, xj (t), X2(f), and xj(t), for Example 4.4
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