4.3 Understanding the Stability Criteria through the **State-Transition Matrix**

In Section 2.6 we listed the criteria by which we can judge whether a system is stable. The state-transition matrix allows us to understand the stability criteria. We saw in Example 4.2 that the elements of e^{At} are linear combinations of $\exp(\lambda_k t)$, where λ_k for $k=1,2,\ldots,n$ are the distinct eigenvalues of the system (Eq. (4.40)). Such elements can be expressed as $\exp(a_k t)$ multiplied by oscillatory terms, $\sin(b_k t)$ and $\cos(b_k t)$, where a_k and b_k are real and imaginary parts of the kth eigenvalue, $\lambda_k = a_k + ib_k$ (Eq. (4.41)). If the real parts, a_k , of all the eigenvalues are negative – as in Example 4.2 – the initial responses of all the state-variables will decay to zero as time, t, becomes large due to the presence of $\exp(a_k t)$ as the factor in all the elements of e^{At} . Hence, a system with all eigenvalues having negative real parts is asymptotically stable. This is the first stability criterion. By the same token, if any eigenvalue λ_k , has a positive real part, a_k , then the corresponding factor $\exp(a_k t)$ will diverge to infinity as time, t, becomes large, signifying an unstable system. This is the second stability criterion.

In Example 4.4, we saw that if a zero eigenvalue is repeated twice, it leads to the presence of terms such as ct, where c is a constant, in the elements of e^{At} (Eq. (4.51)). More generally, if an eigenvalue, λ_k , which is repeated twice has zero real part (i.e. $\lambda_k = i b_k$), then e^{At} will have terms such as $t \sin(b_k t)$ and $t \cos(b_k t)$ – and their combinations – in its elements. If an eigenvalue with zero real part is repeated thrice, then e^{At} will have combinations of $t^2 \sin(b_k t)$, $t^2 \cos(b_k t)$, $t \sin(b_k t)$, and $t \cos(b_k t)$ in its elements. Similarly, for eigenvalues with zero real parts repeated larger number of times, there will be higher powers of t present as coefficients of the oscillatory terms in the elements of e^{At} . Hence, if any eigenvalue, λ_k , having zero real part is repeated two or more times, the presence of powers of t as coefficients of the oscillatory terms, $\sin(b_k t)$ and $\cos(b_k t)$, causes elements of e^{At} to blow-up as time, t, increases, thereby indicating an unstable system. This is the third stability criterion.

Note that individual initial responses to a specific initial condition may not be sufficient to tell us whether a system is stable. This is seen in the following example.

Example 4.5

Reconsider the system of Example 4.4 with the initial condition, $\mathbf{x}(0) = [1]$ Substituting the initial condition into Eq. (4.16), we get the following initial response for the system:

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = e^{\mathbf{A}t} \quad \mathbf{x}(0) = \begin{bmatrix} e^{-2t} \\ 0 \\ 0 \end{bmatrix}; \quad (t > 0)$$
 (4.53)

Equation (4.53) indicates that $\mathbf{x}(t) \to 0$ as $t \to \infty$. Thus, a system we know to be unstable from Example 4.4 (and from the third stability criterion), has an initial response decaying asymptotically to zero when the initial condition is $\mathbf{x}(0) =$ 0]^T, which is the characteristic of an asymptotically stable system.

Example 4.5 illustrates that we can be fooled into believing that a system is stable if we look at its initial response to only some specific initial conditions. A true mirror of the