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system's stability is its state-transition matrix, which reflects the three stability criteria.
If any element of the state-transition matrix grows to infinity as time becomes large, the
system is unstable. Then it is possible to find at least one initial condition that leads to an
unbounded initial response. The state-transition matrix contains information about how a
system will respond to an arbitrary initial condition. Hence, the stability of a system is
deduced from all possible initial conditions (i.e. the state-transition matrix), rather than
from only some specific ones.

4.4 Numerical Solution of Linear Time-Invariant
State-Equations

In the previous sections, we saw two methods for calculating the state-transition matrix,
which is required for the solution of the linear state-equations. The diagonalization method
works only if the system eigenvalues are distinct. Calculating the state-transition matrix
by the inverse Laplace transform method of Eq. (4.47) is a tedious process, taking into
account the matrix inversion, partial fraction expansion, and inverse Laplace transfor-
mation of each element of the resolvent, as Example 4.4 illustrates. While the partial
fraction expansions can be carried out using the intrinsic MATLAB function residue, the
other steps must be performed by hand. Clearly, the utility of Eq. (4.47) is limited to
small order systems. Even for the systems which allow easy calculation of the state-
transition matrix, the calculation of the steady-state response requires time integration of
the input terms (Eq. (4.27)), which is no mean task if the inputs are arbitrary functions
of time.

The definition of the matrix exponential, exp{A(r — /o)K by the Taylor series expansion
of Eq. (4.18) gives us another way of calculating the state-transition matrix. However,
since Eq. (4.18) requires evaluation of an infinite series, the exact calculation of
exp{A(f — to)} is impossible by this approach. Instead, we use an approximation to
exp{A(f — ?o)} in which only a finite number of terms are retained in the series on the
right-hand side of Eq. (4.18):

exp{A(/ - r0)} % I + A(r - t0) + A2(r - t0)
2/2\

+ A3(t - f0)3/3! + • • • + \N(t - t0)
N/N\ (4.54)

Note that the approximation given by Eq. (4.54) consists of powers of A(r — to) up
to N. In Eq. (4.54), we have neglected the following infinite series, called the remainder
series, R/v, which is also the error in our approximation of exp{A(f — to)}:

RN = A"+1 (/ - t0)
N+l/(N + 1)! + A"+2(f - t0)

N+2/(N + 2)!
oc

+ \N+3(t-t0)
N+3/(N + 3)! + • • - . = £ A.k(t-t0)

k/k\ (4.55)
*=yv+i

Clearly, the accuracy of the approximation in Eq. (4.54) depends upon how large is
the error, RN, given by Eq. (4.55). Since RN is a matrix, when we ask how large is the
error, we mean how large is each element of R#. The magnitude of the matrix, R#, is
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NUMERICAL SOLUTION OF LINEAR TIME-INVARIANT STATE-EQUATIONS 185

a matrix consisting of magnitudes of the elements of R^. However, it is quite useful to
assign a scalar quantity, called the norm, to measure the magnitude of a matrix. There
are several ways in which the norm of a matrix can be defined, such as the sum of the
magnitudes of all the elements, or the square-root of the sum of the squares of all the
elements. Let us assign such a scalar norm to measure the magnitude of the error matrix,
R/v, and denote it by the symbol ||R/v||, which is written as follows:

I R A / I I = | |A*||(f-fo)V* (4.56)

The inequality on the right-hand side of Eq. (4.56) is due to the well known triangle
inequality, which implies that if a and b are real numbers, then \a + b\ < \a\ + \b\. Now,
for our approximation of Eq. (4.54) to be accurate, the first thing we require is that the
magnitude of error, | |R/vl i» be a finite quantity. Secondly, the error magnitude should
be small. The first requirement is met by noting that the Taylor series of Eq. (4.18)
is convergent, i.e. the successive terms of the series become smaller and smaller. The
mifinite series on the extreme right-hand side of Eq. (4.56) - which is a part of the
Taylor series - is also finite. Hence, irrespective of the value of N, ||R#|| is always finite.
From Eq. (4.56), we see that the approximation error can be made small in two ways:
(a) by increasing N, and (b) by decreasing (t — to). The implementation of Eq. (4.54) in
a computer program can be done using an algorithm which selects the highest power, TV,
based on the desired accuracy, i.e. the error given by Eq. (4.56). MATLAB uses a similar
algorithm in its function named expm2 which computes the matrix exponential using the
finite series approximation. Other algorithms based on the finite series approximation to
the matrix exponential are given in Golub and van Loan [1] and Moler and van Loan [2J.
The accuracy of the algorithms varies according to their implementation. The MATLAB
functions expm and expm] use two different algorithms for the computation of the matrix
exponential based on Laplace transform of the finite-series of Eq. (4.54) - which results
in each element of the matrix exponential being approximated by a rational polynomial
in s, called the Fade approximation. Compared to expm2 - which directly implements
the finite Taylor series approximation - expm and expml are more accurate.

There is a limit to which the number of terms in the approximation can be increased.
Therefore, for a given N, the accuracy of approximation in Eq. (4.54) can be increased
by making (t — fo) small. How small is small enough? Obviously, the answer depends
upon the system's dynamics matrix, A, as well as on N. If (t — to) is chosen to be small,
how will we evaluate the state-transition matrix for large time? For this purpose, we will
use the time-marching approach defined by the following property of the state-transition
matrix (Table 4.1):

exp{A(f - t0)} = exp{A(r - f , ) } exp{A(ri - r{))} (4.57)

where to < t\ < t. The time-marching approach for the computation of the state-transition
matrix consists of evaluating eAAf as follows using Eq. (4.54):

eAAf % I + AA? + A2(A02/2! + A3(Ar)3/3! + • • • + AN(&t)N/N\ (4.58)
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186 _ SOLVING THE STATE-EQUATIONS _

where Af is a small time-step, and then marching ahead in time - like an army marches
on with fixed footsteps - using Eq. (4.57) with t = r0 + «Af and t\ = to + (n — l)Af as
follows:

exp{A(f0 + n A?)} = eAA' exp{A[f0 + (n - l)Af]} (4.59)

Equation (4.59) allows successive evaluation of exp{A(f0 + «Af)} for n = 1, 2, 3, ...
until the final time, f , is reached. The time-marching approach given by Eqs. (4.58)
and (4.59) can be easily programmed on a digital computer. However, instead of finding
the state-transition matrix at time, t > to, we are more interested in obtaining the solution
of the state-equations, Eq. (4.8), x(f), when initial condition is specified at time tQ. To do
so, let us apply the time-marching approach to Eq. (4.27) by substituting t = to + wA/,
and writing the solution after n time-steps as follows:

/

to+nAt
exp{A(fo + n&t - r)}Bu(T)</r; (n = 1, 2, 3, . . .)

-j
(4.60)

For the first time step, i.e. n = 1, Eq. (4.60) is written as follows:

/

'o+A/
exp{A(r0 + Ar - r)}Bu(r)dr (4.61)

j

The integral term in Eq. (4.61) can be expressed as

fo+Af /-A/

/

f o + f / - /

exp{A(r0 + A/ - r)}Bu(r)dr = eAA' / e~ArBu(/0 + T)dT
.j Jo

(4.62)

where T = r — t0. Since the time step, Ar, is small, we can assume that the integrand
vector e~ArBu(?o + T) is essentially constant in the interval 0 < T < Af , and is equal to
e~AA'Bu(?o + A/). Thus, we can approximate the integral term in Eq. (4.62) as follows:

/•Af

eAA' / e-A7"Bu(r0 + T)dT % eAA'e-AA'Bu(r0 4- Ar)Af = Bu(r0 + Ar)Ar = Bu(r0)Ar
Jo

(4.63)
Note that in Eq. (4.63), we have used u(fo + Ar) = u(fo), because the input vector is
assumed to be constant in the interval to < t < to + A/. Substituting Eq. (4.63) into
Eq. (4.61), the approximate solution after the first time step is written as

x(r0 + AO % eAA'x(r0) + Bu(r0)Af (4.64)

For the next time step, i.e. n = 2 and t = to + 2Af , we can use the solution after the first
time step, x(tQ + Af), which is already known from Eq. (4.64), as the initial condition
and, assuming that the input vector is constant in the interval tQ + Af < t < to + 2Ar,
the solution can be written as follows:

x(r0 + 2Af) % eAA'x(r0 + A/) + Bu(r0 + A/) A/ (4.65)

The process of time-marching, i.e. using the solution after the previous time step as the
initial condition for calculating the solution after the next time step, is continued and the

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



NUMERICAL SOLUTION OF LINEAR TIME-INVARIANT STATE-EQUATIONS 187

solution after n time steps can be approximated as follows:

Bu(f0 + (n - l ) A / ) A f ; (n = 1 , 2 , 3 , . . . )
(4.66)

A special case of the system response is to the unit impulse inputs, i.e. u(f) = S(t —
r0)[ 1; 1; . . . ; 1 ] T . In such a case, the integral in Eq. (4.62) is exactly evaluated as
follows, using the sampling property of the unit impulse function, S(t — to), given by
Eq. (2.24):

exp{A(f0 + Af - r)}Bu(r)jT = eAAfB (4.67)f
Jtn'to

which results in the following solution:

-(n - l ) A / ) + B A f ] ; (n = 1, 2, 3 , . . . ) (4.68)

Note that the solution given by Eq. (4.68) is an exact result, and is valid only if all the
inputs are unit impulse functions applied at time t = IQ.

By the time-marching method of solving the state-equations we have essentially
converted the continuous-time system, given by Eq. (4.8), to a discrete-time (or digital)
system given by Eq. (4.66) (or, in the special case of unit impulse inputs, by Eq. (4.67)).
The difference between the two is enormous, as we will see in Chapter 8. While in a
continuous-time system the time is smoothly changing and can assume any real value, in
a digital system the time can only be an integral multiple of the time step, A? (i.e. A/
multiplied by an integer). The continuous-time system is clearly the limiting case of the
digital system in the limit A? —> 0. Hence, the accuracy of approximating a continuous-
time system by a digital system is crucially dependent on the size of the time step, A?; the
accuracy improves as A/ becomes smaller. The state-equation of a linear, time-invariant,
digital system with to = 0 can be written as

x(/iAr) = A d x ( ( n - l ) A f ) + B d u ( ( n - l ) A f ) ; (« = 1,2, 3, . . . ) (4.69)

where Ad and B<j are the digital state coefficient matrices. Comparing Eqs. (4.66) and
(4.69) we find that the solution of a continuous-time state-equation is approximated by
the solution of a digital state-equation with Ad = eAAr and Bd = BAf when the initial
condition is specified at time / = 0. The digital solution, x(«AO, is simply obtained from
Eq. (4.69) using the time-marching method starting from the initial condition, x(0), and
assuming that the input vector is constant during each time step. The digital solution of
Eq. (4.69) is easily implemented on a digital computer, which itself works with a non-zero
time step and input signals that are specified over each time step (called digital signals).

The assumption of a constant input vector during each time step, used in Eq. (4.63),
results in a staircase like approximation of u(?) (Figure 4.3), and is called a zero-order
hold, i.e. a zero-order linear interpolation of u(f) during each time step, (n — 1)A/1 < t <
nAt. The zero-order hold approximates u(0 by a step function in each time step. It is a
good approximation even with a large time step, A?, if u(?) itself is a step like function
in continuous-time, such as a square wave. However, if u(0 is a smooth function in
continuous-time, then it is more accurate to use a higher order interpolation to approximate
u(t) in each time step, rather than using the zero-order hold. One such approximation is
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188 SOLVING THE STATE-EQUATIONS

u(t)

First-order hold

Continuous-time

Zero-order hold
At

Figure 4.3 The zero-order and first-order hold digital approximations of a continuous-time input, u(f)

the first-order hold which approximates u(0 as a ramp function (i.e. a first-order linear
interpolation) in each time step (n — 1)A/ < / < nA/ (Figure 4.3).

The conversion of a continuous-time system to the corresponding digital approximation
using the zero-order hold for the input vector (Eq. (4.66)) is performed by the MATLAB
Control System Toolbox (CST) function c2d, which calculates eAA' using the intrinsic
MATLAB function expm. The command c2d is employed as follows:

»sysd = c2d(sysc,Ts, 'method') <enter>

where sysc is the continuous-time state-space LTI object, Ts is the specified time step,
(Ar), and sysd is the resulting digital state-space approximation of Eq. (4.69). The
'method' allows a user to select among zero-order hold ('zo/O, first-order hold ('/o/i'), or
higher-order interpolations for the input vector, called Tustin (or bilinear) approximation
( l tustin'), and Tustin interpolation with frequency prewarping ('prewarp'). The Tustin
approximation involves a trapezoidal approximation for u ( l )(/) in each time step (we
will discuss the Tustin approximation a little more in Chapter 8). Tustin interpolation with
frequency prewarping ('prewarp') is a more accurate interpolation than plain'tustin'. An
alternative to eld is the CST function c2dm, which lets the user work directly with the
state coefficient matrices rather than the LTI objects of the continuous time and digital
systems as follows:

»[Ad,Bd,Cd,Dd] = c2dm(A,B,C,D,Ts, 'method') <enter>

where A, B, C, D are the continuous-time state-space coefficient matrices, Ad, Bd, Cd,
Dd are the returned digital state-space coefficient matrices, and Ts and 'method' are the
same as in eld. For more information on these MATLAB (CST) commands, you may
refer to the Users' Guide for MATLAB Control System Toolbox [3].

How large should be the step size, Ar, selected in obtaining the digital approximation
given by Eq. (4.69)? This question is best answered by considering how fast the system
is likely to respond to a given initial condition, or to an applied input. Obviously, a
fast changing response will not be captured very accurately by using a large Ar. Since
the state-transition matrix, eAA', has elements which are combinations of exp(A*Ar),
where kk, k = 1, 2, etc., are the eigenvalues of A, it stand to reason that the time step.
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NUMERICAL SOLUTION OF LINEAR TIME-INVARIANT STATE-EQUATIONS 189

Af, should be small enough to accurately evaluate the fastest changing element of eAAr.
which is represented by the eigenvalue, A.fc, corresponding to the largest natural frequency.
Recall from Chapter 2 that the natural frequency is associated with the imaginary part,
b, of the eigenvalue, Ajt = a+bi, which leads to oscillatory terms such as s'm(bAt)
and cos(&Af) in the elements of eAAf (Example 4.2). Hence, we should select At such
that A? < l / l & l m a x where |b|max denotes the largest imaginary part magnitude of all the
eigenvalues of A. To be on the safe-side of accuracy, it is advisable to make the time
step smaller than the ten times the reciprocal of the largest imaginary part magnitude, i.e.
A? < 0. l/|£|max. If all the eigenvalues of a system are real, then the oscillatory terms are
absent in the state-transition matrix, and one can choose the time step to be smaller than
the reciprocal of the largest real part magnitude of all the eigenvalues of the system, i.e.

Once a digital approximation, Eq. (4.69), to the linear, time-invariant, continuous-time
system is available, the MATLAB (CST) command Ititr can be used to solve for x(«A/)
using time-marching with n = 1, 2, 3, . . . , given the initial condition, x(0), and the input
vector, u(r), at the time points, t = (n — l ) A r , n = 1. 2, 3, . . . as follows:

»x = ltitr(Ad,Bd,u,xO) <enter>

where Ad, Bd, are the digital state-space coefficient matrices, xO is the initial condition
vector, u is a matrix having as many columns as there are inputs, and the /th row of u
corresponds to the z'th time point, x is the returned matrix with as many columns as there

Table 4.2 Listing of the M-file march.m

march.m

function [y,X] = march(A,B,C,D,XO,t,u,method)
% Time-marching solution of linear, time-invariant
% state-space equations using the digital approximation.
% A= state dynamics matrix; B= state input coefficient matrix;
% C= state output coefficient matrix;
% D= direct transmission matrix;
% X0= initial state vector; t= time vector.
% u=matrix with the ith input stored in the ith column, and jth row
% corresponding to the jth time point.
% y= returned output matrix with ith output stored in the ith column,
% and jth row corresponding to the jth time point.
% X= returned state matrix with ith state variable stored in the ith
% column, and jth row corresponding to the jth time point.
% method= method of digital interpolation for the inputs(see 'c2dm')
% copyright(c)2000 by Ashish Tewari
n-size(t,2);
dt=t(2)-t(1);
% digital approximation of the continuous-time system:-
[ad,bd,cd,dd]=c2dm(A,B,C,D,dt,method);
% solution of the digital state-equation by time-marching:-
X=ltitr(ad,bd,u,XO);
% calculation of the outputs:-
y=X*C'+u*D';
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190 SOLVING THE STATE-EQUATIONS

are state variables, and with the same number of rows as u, with the ith row corresponding
to the ith time-point (the first row of x consists of the elements of xO).

The entire solution procedure for the state-space equation using the digital approxima-
tion of Eq. (4.66) can be programmed in a new M-file named march, which is tabulated
in Table 4.2. This M-file can be executed as follows:

> > [y>x] = march(A,B,C,D,xO,t,u,'method') <enter>

where A, B, C, D, xO, u, x, and 'method' are the same as those explained previously in the
usage of the MATLAB (CST) command c2dm, while t is the time vector containing the
equally spaced time-points at which the input, u, is specified, and y is the returned matrix
containing the outputs of the system in its columns, with each row of y corresponding to
a different time-point.

Example 4.6

Using the time-marching approach, let us calculate the response of the system given
in Example 4.1 when «(/) = us(t). Since the largest eigenvalue is —3, we can select
the time step to be Ar < 1/3, or Ar < 0.333. Selecting A/ = 0.1, we can generate
the time vector regularly spaced from t = 0 to t = 2 s, and specify the unit step
input, M, as follows:

»t=0:0.1:2; u=ones(size(t,2),1); <enter>

0.5

-0.5
y2(0

0.5 1 1.5
Time (s)

Figure 4.4 The calculated outputs, yi (t) and 72(t), for Example 4.6
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NUMERICAL SOLUTION OF LINEAR TIME-IN VARIANT STATE-EQUATIONS 191

Then, the M-file march.m is executed with zero-order hold, after specifying the state
coefficient matrices and the initial condition vector (it is assumed that the outputs
are the state variables themselves, i.e. C — I, D = 0) as follows:

»A= [-3 0; 0 -2]; B = [1; -1]; C = eye(2); D = zeros(2,1); XO = [1; 0]; <enter>

>>[y,X] = march(A,B,C,D,XO,t,u,'zoh'); <enter>

The outputs, which are also the two state variables, x\(t) and x2(t), are plotted
against the time vector, t, in Figure 4.4 as follows:

»plot(t,y) <enter>

You may verify that the result plotted in Figure 4.4 is almost indistinguishable from
the analytical result obtained in Eqs. (4.13) and (4.14), which for a unit step input
yield the following:

A-,(?) = (2e~3/ 4- l)/3; x2(t) = (e~2t - 0/2 (4.70)

Example 4.7

In Examples 2.10 and 3.10, we saw how the linearized longitudinal motion of
an aircraft can be represented by appropriate transfer functions and state-space
representations. These examples had involved the assumption that the structure
of the aircraft is rigid, i.e. the aircraft does not get deformed by the air-loads
acting on it. However, such an assumption is invalid, because most aircraft have
rather flexible structures. Deformations of a flexible aircraft under changing air-loads
caused by the aircraft's motion, result in a complex dynamics, called aeroelasticity.
Usually, the short-period mode has a frequency closer to that of the elastic motion,
while the phugoid mode has little aeroelastic effect. The longitudinal motion of a
flexible bomber aircraft is modeled as a second order short-period mode, a second-
order fuselage bending mode, and two first-order control-surface actuators. The
sixth order system is described by the following linear, time-invariant, state-space
representation:

0
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Pitch-rate,
y2(0

Normal
acceleration,

C.G. Normal
acceleration

sensor
Elevator

Figure 4.5 Inputs and outputs for the longitudinal dynamics of a flexible bomber aircraft

-[ -1491
0

-146.43 -40.2
1.0 0

-0.9412
0

-1285 -564.66'

(4.71)

The inputs are the desired elevator deflection (rad.), MI( / ) , and the desired canard
deflection (rad.), U2(t), while the outputs are the sensor location's normal accelera-
tion (m/s2), yi(0, and the pitch-rate (rad./s), j2(0- See Figure 4.5 for a description
of the inputs and outputs.

Let us calculate the response of the system if the initial condition and the input
vector are the following:

x(0) = [0.1; 0; 0; 0; 0; u(r) = sin(120
(4.72)

First, let us select a proper time step for solving the state-equations. The system's
eigenvalues are calculated using the command damp as follows:

»damp(A) <enter>

Eigenvalue
-4.2501e-001 + 1.87486+OOOi
-4.25016-001 - 1.87486+OOOi
-5.08696-001 + 6.0289e+000i
-5.08696-001 - 6.02896+OOOi
-7.50006+001
-1.00006+002

The largest imaginary part magnitude of the eigenvalues is 6.03, while the largest
real part magnitude is 100. Therefore, from our earlier discussion, the time step
should be selected such that Af < 0.1/6 s and Ar < 1/100 s. Clearly, selecting the
smaller of the two numbers, i.e. Ar < 1/100 s, will satisfy both the inequalities.

Damping
2.21096-001
2.21096-001
8.40776-002
8.40776-002
1 .00006+000
1 .00006+000

Freq. (rad/sec)
1.92246+000
1.92246+000
6.05036+000
6.05036+000
7.50006+001
1 . 00006+002
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NUMERICAL SOLUTION OF LINEAR TIME-INVARIANT STATE-EQUATIONS 193

Hence, we select A? = 1/150 s = 6.6667e — 003 s. The time vector, t, the input
matrix, u, and initial condition vector, xO, are then specified as follows:

»t = 0:6.66676-3:5; u = [ -0.05*sin(10*t) ; 0.05*sin(12*t) ] ' ;
XO = [0,1 zeros(1 ,5) ] ' ; <enter>

Then the M-file march.m is used with a first-order hold for greater accuracy (since
the inputs are smoothly varying) as follows:

»[yf,Xf] = march(A,B,C,D,XO,t,u, 'foh1 ) ; <enter>

To see how much is the difference in the computed outputs if a less accurate zero-
order hold is used, we re-compute the solution using march.m with 'zo/z' as the
'method':

»[yz,Xz] = j U , 'zoh' ) ; <enter>

The computed outputs, y \ ( t ) , and y2(t), are plotted in Figures 4.6 and 4.7, respec-
tively, for the zero-order and first-order holds. It is observed in Figure 4.6 that the
output y \ ( t ) calculated using the first-order hold has slightly lower peaks when
compared to that calculated using the zero-order hold. Figure 4.7 shows virtually
no difference between the values of y2(/) calculated by zero-order and first-order
holds.
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2 3
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Figure 4.6 The normal acceleration output, /i(f), for the flexible bomber aircraft of
Example 4.7
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Figure 4.7 The pitch-rate output, 72(0, of the flexible bomber aircraft of Example 4.7

The MATLAB (CST) function Isim is an alternative to march for solving the state-
equations by digital approximation, and is used as follows:

>>[y,t,x] = lsim(sys,u,t,xO,'method'); <enter>

where sys is an LTI object of the system, while the arguments u, t, 'method' (either 'zo/i',
or '/0/z') and the returned output matrix, y, and state solution matrix, x, are defined in
the same manner as in the M-file march. The user need not specify which interpolation
method between 'zoh' and 'foh' has to be used in Isim. If a 'method' is not specified, the
function Isim checks the shape of the input, and applies a zero-order hold to the portions
which have step-like changes, and the first-order hold to the portions which are smooth
functions of time. In this regard, Isim is more efficient than march, since it optimizes the
interpolation of the input, u(r), portion by portion, instead of applying a user specified
interpolation to the entire input done by march. However, Isim can be confused if there
are rapid changes between smooth and step-like portions of the input. Hence, there is a
need for selecting a small time step for rapidly changing inputs in Isim.

Example 4.8

For the system in Example 4.7, compare the solutions obtained using the MATLAB
(CST) command Isim and the M-file march when the initial condition is xO =
[0.1; 0; 0; 0; 0; 0]r when the elevator input, M I ( f ) is a rectangular pulse
applied at t = 0 with amplitude 0.05 rad. and duration 0.05 s, while the canard input,
u2(t), is a sawtooth pulse applied at t = 0 with amplitude 0.05 rad. and duration
0.05 s. The rectangular pulse and the sawtooth pulse are defined in Examples 2.5
and 2.7, respectively.
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Mathematically, we can express the input vector as follows, using Eqs. (2.32)
and (2.33):

0.05[M.V ( f+0.05)-MS(0]

r(0 - r(t - 0.05) - 0.05w,(f - 0.05)
(4.73)

where us(t) and r(0 are the unit step and unit ramp functions, respectively. Using
MATLAB, the inputs are generated as follows:

»dt=6.6667e-3; t=0:dt:5; u1=0.05*(t«3.05+dt); i=find(t<0.05+dt);
u2=u1; u2(i)=t(i); u = [u1' u2 ' ] ; <enter>

Assuming that A, B, C, D, xO are already available in the MATLAB workspace
from Example 4.7, we can calculate the response of the system using march as
follows:

»[Y1,X1] = m a r c h ( A , B 3 C , D } X O , t , u J ' z o h ' ) ; <enter>

where Yl is the returned output matrix for zero-order hold. For comparison, the
solution is also obtained using him and the output is stored in matrix Y2 as follows:

»sys=ss(A,B,C,D); [Y2,t,X2] = lsim(sys,u,t,XO); <enter>

The computed outputs, y\ (0 and }>2(0, by the two different methods are compared
in Figures 4.8 and 4.9, respectively. Note that the responses calculated using march
with zero-order hold and him are indistinguishable.

i i i
- march with zero-order hold
Isim

Figure 4.8 Normal acceleration output for the flexible bomber aircraft in Example 4.8 with
rectangular pulse elevator input and sawtooth pulse canard input
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march with zero-order hold
Isim
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Figure 4.9 Pitch-rate output for the flexible bomber aircraft in Example 4.8 with rectangular
pulse elevator input and sawtooth pulse canard input

When the inputs are impulse functions, the M-files march and Isim cannot be used
directly, because it is impossible to describe the impulse function (which, by definition,
goes to infinity in almost zero time) by an input vector. Instead, the digital approximation
is obtained using an equation similar to Eq. (4.68), which gives the solution if all the
inputs are unit impulse functions applied at t = IQ. For a more general case, i.e. when the
input vector is given by u(r) = 8(t — /o)[ c\; C2', . . . ; cm ]T, where c\, C 2 , . . . , cm are
constants, we can write the solution to the state-equation as follows:

x(r0 + = eAA'[x(?0 + (n- 1)AO + BcAf]; (n = 1, 2, 3, . . . ) (4.74)

where c = [c\\ GI\ ...; cm ]T. Comparing Eqs. (4.68) and (4.74), we find that the
digital approximation for impulse inputs is given by A<j = eAA' and B<j = eAA'B Af, if and
only if the input vector is given by u(r) = us(t)c. For calculating the response to general
impulse inputs of this type applied at t = 0, we can write a MATLAB M-file in a manner
similar to march.m. Such an M-file, called impgen.m is given in Table 4.3. MATLAB
(CST) does have a standard M-file for calculating the impulse response called impulse.m,
which, however, is limited to the special case when all of the imputs are simultaneous
unit impulses, i.e. all elements of the vector c are equal to 1. Clearly, impgen is more
versatile than impulse. (MATLAB (CST) also has a dedicated function for calculating
the step response, called step, which also considers all inputs to be simultaneous unit
step functions.) The advantage of using the MATLAB command impulse (and step) lies
in quickly checking a new control design, without having to generate the time vector,
because the time vector is automatically generated. Also, for systems that are not strictly
proper (i.e. D ̂  0) the CST function impulse disregards the impulse in the response at
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Table 4.3 Listing of the M-ftle impgen.m

impgen.m

function [y,X] = impgen(A,B,C,D,XO,t,c)
% Time-marching solution of linear, time-invariant
% state-space equations using the digital approximation when the
% inputs are impulse functions scaled by constants. The scaling
% constants for the impulse inputs are contained in vector 'c'.
% A= state dynamics matrix; B= state input coefficient matrix;
% C= state output coefficient matrix;
% D= direct transmission matrix;
% X0= initial state vector; t= time vector.
% y= returned output matrix with ith output stored in the ith
% column, and jth row corresponding to the jth time point.
% X= returned state matrix with ith state variable stored in the
% ith column, and jth row corresponding to the jth time point.
% copyright(c)2000 by Ashish Tewari
n=size(t,2);
m=size(c,2);
dt=t(2)-t(1);
% digital approximation of the continuous-time system:-
[ad,bd,cd,dd]=c2dm(A,BJC,D,dt,'zoh');
Bd=ad*bd;
u=ones(n,1)*c';
% time-marching solution of the digital state equation:-
X=ltitr(ad,Bd,u,XO);
% calculation of the outputs:-
y=X*C'+u*D';

t = 0 (see Eq. (2.115)). For details on the usage of these specialized CST functions, use
the MATLAB help command.

Example 4.9

For the flexible bomber aircraft of Example 4.7, let us determine the response if
the initial condition is xO — [0.1; 0; 0; 0; 0; 0]T and the input vector is
given by:

First, the time vector, t, and the coefficient vector, c, are specified as follows:

»dt=6.6667e-3; t=0:dt:10; c=[0 .1 ; - 0 . 1 ] ; <enter>

Then, impgen is invoked as follows, assuming A, B, C, D, xO have been already
computed and stored in the MATLAB workspace:
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