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Figure 4.10 Response of the flexible bomber aircraft of Example 4.9 to elevator and canard
impulse inputs of same magnitude but opposite signs

» [ y , X ] =impge n ( A , B , C , D , XO , t

The computed outputs, y\(t) and y2(0,

, c ) ; <enter>

which are the first and second columns of
the returned matrix, y, respectively, are plotted in Figure 4.10. Note that we could
not get this response from the CST function impulse, which is confined to the case
ofc = [l; I f .

4.5 Numerical Solution of Linear Time-Varying
State-Equations

There is no general analytical procedure of solving the state-equations for linear time-
varying systems (i.e. when the state coefficient matrices, A,B,C,D, are functions of time).
Thus, numerical solution procedures using digital approximation methods, similar to those
of the previous section, are required for solving the state-equations of such systems. For
special time-varying systems in which the state-dynamics matrix, A, is a constant and the
matrices B, C, and D are functions of time, the analytical solution given by Eq. (4.27) is
valid with the following modification:

= exp{A(r -
Jtn

-r)B(r)u(r)dr; > f0) (4.76)

where x(fo) is the initial condition and B(r) indicates the controls coefficient matrix
evaluated at time t = r. For linear, time-varying systems the output equation is given by:

(4.77)
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_ NUMERICAL SOLUTION OF LINEAR TIME-VARYING STATE-EQUATIONS _ 199

For systems with a constant A matrix, the output can be calculated by Eq. (4.77), in which
x(f ) is calculated using Eq. (4.76). A digital approximation of Eq. (4.76) is given by

x(nAr) = Adx((« - l )AO+Bd((n - l)A/)u((n - l )Af ) ; (n = 1 - 2 , 3 . . . . ) (4.78)

where Ad = eAA/ and Bd((n — 1)AO = B((« — l )Ar)Ar . The solution given by
Eq. (4.78) can be implemented in a computer program, such as march.m. However, since
time-varying systems with a constant A matrix are rarely encountered, such a program
will be rarely used. Instead, we need a general solution procedure which is applicable to
a general time-varying system given by:

x ( I )(0 = A(r)x(r) + B(r)u(r) (4.79)

A practical procedure for solving Eq. (4.79) is the application of the time-marching
approach of Section 4.5, assuming that A(0 is constant during each time step, Ar, but

Table 4.4 Listing of the M-file vmarch.m

vmarch.m

function [ y , X ] = vmarch(tvfun,XO,t,u, method)
% Time-marching solution of linear, time-varying
% state-space equations using the matrix exponential.
% X0= initial state vector; t= time vector;
% u=matrix with the ith input stored in the ith column, and jth row

% corresponding to the jth time point
% y= returned matrix with the ith output stored in the ith column,

and jth row
% corresponding to the jth time point
% X= returned matrix with the ith state variable stored in the ith column,
% and jth row corresponding to the jth time point
% method= method of digital interpolation for the inputs (see 'c2dm')
% copyright (c)2000 by Ashish Tewari
n=size(t,2) ;
dt=t(2)-t(l);
% initial condition: -
X(1,:)=XO';
% function evaluation of time varying state coefficient matrices
% using the M-file 'tvfun.m' for initial time t=t(1):-
[A,B,C,D]=feval(tvfun,t(1));
% outputs for t=t(1 ) : -
y(1,:)=X(1,:)*C'+u(1,:)*D';
% beginning of the time-loop: -
for i=1 :n-1
% function evaluation of time varying state coefficient matrices
% using the M-file 'tvfun.m' for t=t(i):-
[A,B,C,D]=feval(tvfun,t(i));
% digital approximation of the continuous-time system: -
[ ad , bd , cd , dd ] =c2dm ( A , B , C , D , dt , method ) ;
% solution of the digital state and output equations :-

: )=X(i, :)*ad'+u(i, :)*bd' ;

end
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200 _ SOLVING THE STATE-EQUATIONS _

varies as we proceed from one time step to the next. In essence, this procedure applies a
zero-order hold to A(r). Thus, the approximate digital solution for a general time-varying
system can be written as follows:

= Ad((n - l)AOx((n - l)Af) + Bd((n - l)Af)u((w - 1)A/); (n - 1, 2, 3, . . .)
(4.80)

where Ad = exp{A((n - l)Af)Af} and Bd((n - l)Af) = B((n - l)Af)Ar. A MATLAB
M-file can be written based on Eqs. (4.80) and (4.77) for computing the time marching
output of a general linear, time-varying system. Such an M-file, called vmarch.m is given
in Table 4.4.

Example 4.10

Consider the following linear, time-varying system:

-O.lsin(r) 0 1 r0.2sin(f)~| ,. 01.
0 -0.7cos(r)J; B(') = [o J (4'81)

-1]; D(r) = -0.05 cos(r) (4.82)

Let us calculate the output, y(0, when the initial condition is x(0) = [0; — l]r

and the input is a unit setp function, u(t) = us(t). The time vector, initial condition,
and input are specified by the following MATLAB command:

»t = 0:0.1:10; XO = [0 -1 ] ' ; u = ones(size(t,2) , 1); <enter>

The time- vary ing coefficient matrices are calculated by the M-file timv.m tabulated
in Table 4.5. Then, the solution to the time-varying state-equations and the output
are obtained by calling vmarch.m as follows:

> > [ y » X ] = vmarch( ' t imv' , X O , t , u , 'zoh ' ) ; <enter>

The resulting output, y(0, is plotted in Figure 4.11.

Table 4.5 Listing of the M-file timv.m

timv.m

function [A.B.C.D
% Linear time-varying state coefficient matrices for Example 4.10.
A=[-0.1*sin(t) 0;0 -0.7*cos(t) ] ;
B=[0.2*sin(t);0];
C=[1 -1] ;
D=-0.05*cos(t);
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Figure 4.11 Output of the linear, time-varying system of Example 4.10

Example 4.11

Let us obtain the response of an interesting time-varying system. Consider a surface-
to-air missile propelled by a rocket engine. Once launched, the rocket consumes
the fuel rapidly, thereby changing the mass, center-of-gravity, and moments of
inertia of the missile. Also, as the fuel is burned, the missile accelerates and
changes altitude. The aerodynamic forces and moments acting on the missile are
functions of the flight velocity and the altitude; therefore, the aerodynamic prop-
erties of the missile also keep changing with time. The motion of the missile is
described by the following state variables: velocities, U, V, and W, along three
mutually perpendicular axes, x, y, z, respectively, passing through the missile's
center of gravity, and the rotation rates, p, q, and r, about x, y, and z, respec-
tively. The state-vector is thus x(f) = [U(t)\ V(t); W(t); p(t); q(t}; r ( t ) ] T . All the
state-variables are assumed to be the outputs of the system. A diagram of the
missile showing the state-variables and the inputs is given in Figure 4.12. One
input to the missile is the rolling-moment, AL, about the longitudinal axis of the
missile caused by the deflection of an aerodynamic control surface. In addition, the
thrust from the rocket engine can be vectored (i.e. deflected) by small angles, a
and ft, in the longitudinal (X, Z) plane and lateral (Y, Z) plane, respectively, of
the missile (Figure 4.12). These thrust deflection angles constitute two additional
inputs to the missile. The input vector is u(?) = [a; ft; AL]r. The thrust of the
missile is assumed constant until the rocket motor burns-out at t = 20 s, after which
time the thrust is zero. The time-varying state-coefficient matrices representing the
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202 SOLVING THE STATE-EQUATIONS

X, U

Y, V

Thrust

Figure 4.12 State-variables and inputs for a surface-to-air missile equipped with thrust
vectoring and aerodynamic roll control surfaces

linearized motion of the missile are calculated by the M-file misstimv.m tabulated
in Table 4.6.
Let us calculate the response of the missile if the initial condition is zero, and the
inputs are given by

u(f) =
0.01 sin(0

0
0.01 cos(0

(4.83)

The time vector, initial condition, and input are specified by the following MATLAB
command:

»t = 0:0.2:30; XO = zeros(6,1); u = [0.01*sin(0.1*t)' 0.01*cos(0.1*t)'
zeros(size(t,2),1)] ; <enter>

The output and state solution are then calculated by the following call to vmarch.m:

> > [ y J X ] = v m a r c h ( ' m i s s t i m v ' , X O , t , u , ' z o h ' ) ; <enter>

The calculated outputs, £7(0, V(t), W(t), and p(t), are plotted in Figure 4.13, while
the outputs q(t) and r(r) are shown in Figure 4.14. Note the discontinuity in the
slopes of all the responses at t = 20 s, which is the rocket burn-out time.
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Figure 4.13 The outputs U(t), V(t), W(f), and p(t), for the missile of Example 4.11
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Figure 4.14 The outputs q(f) and r(t) for the missile of Example 4.11
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