
204 SOLVING THE STATE-EQUATIONS

Table 4.6 Listing of the M-file misstimv.m

misstimv.m

function [A,B,C,D]=misstimv(t);
% Linear, time-varying state coefficient matrices for a missile
% x = [u v w p q r] ' ;
% A= state dynamics matrix; B= state input coefficient matrix
% C= state output coefficient matrix; D= direct transmission
matrix
% t= time after launch
% copyright(c)2000 by Ashish Tewari
% Thrust as a function of time:-
if t<=20

Th=1.27176+005;
else

Th=0;
end
% inertia properties as functions of time:-
m=983.6716-29.4208*t-0.5812*tA2+0.0338*tA3;
iy=1000*(2.5475-0.0942*t+0.0022*t~2);ix=iy/10;
xcg=3.6356-0.0217*t-0.0008*t~2;
% aerodynamic and propulsive properties as functions of time:-
Zw=-(246.44+21.9038*t-1.5996*t*t+0.0244*t A3);
Mw=-(872.95-52.7448*t-0.0006*tA2+0.0368*tA3);
Mq=(-3-1.39*t+0.08*tA2)/10;
Lr=0.0134+0.0029*t-0.0001*t~2;
Lp=-0.0672-0.0143*t+0.0006*t~2;
Lv=-0.1159-0.0317*t+0.0015*tA2;
Zu=-9.5383-2.592*t+0.1209*t~2-0.0011*tA3;
Xw=1 .9067+0.5186*t -0.0242*t "2+0.0002*̂ 3;
Md=1e5*(1.3425-2.3946*t+0.1278*t"2-0.0017*tA3);
Zd=1e4*(-2.0143-3.6649*t+0.1854*tA2-0.0023*tA3);
Yv=Zw;Nv=Mw;Nr=Mq;Np=Lp/10;Xu=Th/400+Zu/10;ci=(iy-ix)/iy;
% the state coefficient matrices:-
A=[Xu/m 0 Xw/m 0 0 0;0 Yv/m 000 0;Zu/m 0 Zw/m 000;
0 Lv/ix 0 Lp/ix 0 Lr/ix;0 0 Mw/iy 0 Mq/iy 0;
0 Nv/iy 0 Np/iy 0 Nr/iy];

B=[0 0 0;Th/m 0 0;0 Th/m 0;0 0 1;0 Th*xcg/iy 0;Th*xcg/iy 0 0];
C=eye(6);D=zeros(6,3);

4.6 Numerical Solution of Nonlinear State-Equations

The nonlinear state-equations are the most difficult to solve. As for time-varying systems,
there is no analytical solution for a set of general nonlinear state-equations. There are
several numerical schemes available for solving a set of nonlinear, first-order differential
equations using the digital approximation to the continuous-time differential equations.
Since the state-equations of a nonlinear system are also a set of nonlinear, first-order
differential equations, we can use such numerical schemes to solve the state-equations of
nonlinear systems. Due to the nonlinear nature of the differential equations, the solution
procedure often is more complicated than merely marching forward in time, as we did

C
o
p
y
r
i
g
h
t

2
0
0
2
.

J
o
h
n

W
i
l
e
y

a
n
d

S
o
n
s
,

I
n
c
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD
AN: 83694 ; Tewari, Ashish.; Modern Control Design with MATLAB and SIMULINK
Account: s2888710.main.ehost

NUMERICAL SOLUTION OF NONLINEAR STATE-EQUATIONS 205

for linear systems in the previous two sections. Instead, an iterative solution procedure
may be required at each time step, which means that we assume a starting solution, and
then go back and keep on changing the assumed solution until the solution converges (i.e.
stops changing appreciably with the steps of the iteration).

A general set of nonlinear state-equations can be expressed as follows:

x (l)(0 = /(x(0.u(0,0 (4.84)

where x(0 is the state-vector, u(0 is the input vector, and /(x(0, u(0, 0 denotes a
nonlinear function involving the state variables, the inputs, and time, t. The solution,
x(0, of Eq. (4.84) with the initial condition, x(?o) = x0 may not always exist. The exis-
tence of solution of nonlinear differential equations requires that the nonlinear function,
/(x(0, u(0, t), should be defined and continuous for all finite times, t > to. Also, it is
required that /(x(0, u(0, 0 must satisfy the following condition, known as the Lipschitz.
condition:

|/(x(0, u(f) , 0 - /(x*(0, u(0, 01 < K \ x (t) - x*(OI (4.85)

where x*(0 is a vector different from x(0, K is a constant, and |V| denotes a vector
consisting of the absolute value of each element of the vector V. For greater details on
the existence of solution of ordinary nonlinear differential equations see a textbook on
ordinary differential equations, such as Henrici [4]. In this book, we will assume that we
are dealing with nonlinear system which have a solution to their state-equations. Owing
to the nonlinear nature of the differential equations, the numerical procedure cannot be
a one-shot (i.e. an open-loop) process, such as that used for linear differential equations.
Instead, an iterative solution procedure is required for nonlinear systems, which consists
of repeatedly evaluating the solution in a loop (such as the feedback loop) at each time
step, until the solution meets certain desirable conditions. Hence, a nonlinear solution
procedure itself is a closed-loop system.

The digital solution procedures for Eq. (4.84) can be divided into single-step methods,
multi-step methods, and hybrid methods. The single-step methods obtain the approximate
solution vector by using the state-vector and input vector only at the previous time step.
The time marching solution methods of the previous two sections are single-step methods
for linear state-equations. For nonlinear systems, examples of single-step methods are
Runge-Kutta and Adams methods. The multi-step methods use information from more
than one previous time steps to obtain the approximate solution at a given time step. The
predictor-corrector methods are examples of multi-step methods. The hybrid methods are
those that either do not fall into the categories of single- and multi-step methods, or those
that use information from previous time steps as well as future (extrapolated) time steps.
The Euler method falls in the hybrid category. For more information on the numerical
solution methods for nonlinear differential equations see Ralston and Rabinowitz [5].

While choosing which method to use for solving a nonlinear set of differential equations
one should consider numerical accuracy (how large is the digital approximation error),
efficiency (how fast is the algorithm when implemented on a computer), numerical stability
(whether the algorithm converges to a solution), and starting problem (how the algorithm
can be started). While the multi-step and hybrid methods offer a greater efficiency for
a comparable accuracy than the single-step methods, they are usually very difficult to

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

206 _ SOLVING THE STATE-EQUATIONS _

start, and special attention must be paid in changing the time steps to avoid stability
problems. Such issues make multi-step or hybrid methods more complicated than the
single-step methods. Complexity of an algorithm often results in a reduced efficiency
when implemented in a computer program. A single-step method which is simple to
implement, and which provides good accuracy in a wide variety of problems is the
Runge-Kutta method. The Runge-Kutta method uses the following digital approximation
to Eq. (4.84):

p
\(tn) - \(tn-i) = ̂ Ufa (4.86)

i=i

where tn and tn-\ are the nth and (n — l)th time steps, respectively, wf are constants, and

1=1
k, = Afn/Cxa.-O + Tftyk^ua,-!),*„_, +a l-Afn) (4.87)

where A?n =tn— tn-\, a, and fa are constants, with a\ = 0. The time step size, Arw,
can be variable. The constants a, and fa are evaluated by equating the right-hand side
of Eq. (4.86), with the following Taylor series expansion:

kx^fo-i)/*! (4.88)

However, since we cannot numerically evaluate an infinite series, the right-hand side of
Eq. (4.88) is approximated by a finite series of m terms as follows:

m

x(tn) - xfo,-,) % Ar^U-i)/*! (4.89)

The approximation given by Eq. (4.89) leads to a Runge-Kutta method of order m. The
higher the number of terms in the series of Eq. (4.89), the greater will be the accuracy
of the approximation. Comparing Eqs. (4.86) and (4.89), it can be shown that the largest
number of terms that can be retained in the series of Eq. (4.89) is m = p. Usually,
when m = 4, the resulting fourth order Runge-Kutta method is accurate enough for
most practical purposes. It can be shown [5] that substituting Eq. (4.89) into Eq. (4.86),
and making use of the exact differential equation, Eq. (4.84), results in the following
relationships for the parameters of the fourth order Runge-Kutta method:

;;; (/ = 2 , 3 , 4) (4.90)
7=1

' ' ' * f ^ I * * f ^ ' '

= 1/6; W3d2p32 + ̂ ("^42 + a 3/843) =

+"3^43) = 1/8; W4&2P32P41 = 1/24 (4.91)

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

NUMERICAL SOLUTION OF NONLINEAR STATE-EQUATIONS 207

Equations (4.90) and (4.91) represent 11 equations and 13 unknowns. Hence, we can
obtain the solution of any 11 unknowns in terms of the remaining two unknowns, which
we choose to be a2 and #3. The Runge-Kutta parameters are thus the following:

w\ = 1/2 + [1 - 2(a2 + a3)]/(I2a2a3); w2 = (2a3 - l)/[12a3(a3 - «2)0 - «2)]

u'3 = (1 -2a2)/[12a3(a3-a2)(l -a3)]; w4 = 1/2 + [2(a2+a3) - 3]/[12(l -a2)(l -a3)]

032 = 023 = «,(«., - a2)/[2a2(I - «2)]; «4 - 1 (4.92)

£42 = ̂ = (1 - a2)[a2 + a, - 1 - (2a3 - l)2]/{2a2(a3 - «2)[6a2a3 - 4(a2 + a3) + 3]}

043 = 034 = (I - 2a2)(l - a2)(l - a3)/{a3(a3 - a2)[6a2a3 - 4(a2 + a3) + 3]}

Obviously, we should take care to avoid selecting those values for the two parameters, «2
and «3, which lead to the denominators of the expressions in Eq. (4.92) becoming zero.
A popular choice of these two parameters is a2 = «3 — 1/2. However, the choice which
minimizes the approximation error in the fourth order Runge-Kutta method is ao — 0.4,
and «3 = 7/8 - (3/16)^5.

The Runge-Kutta algorithm consists of marching in time using Eq. (4.86) with a vari-
able time step size, Atn. The truncation-error (i.e. error of approximating Eq. (4.88) by
Eq. (4.89)) is estimated using the matrix norm (such as the one defined in Section 4.5)
after each time step. If the error is acceptable, then the solution is updated; if not, the time
step size is reduced, and the error re-calculated until the error becomes acceptable. This
process is repeated for the next time step, using the solution from the previous step, and so
on until the final time is reached. Using MATLAB, a Runge-Kutta algorithm can be easily
programmed. Fortunately, MATLAB comes with intrinsic nonlinear functions ode23 and
ode45, which are based on third and fifth order Runge-Kutta algorithms, respectively.
Other MATLAB functions for solving nonlinear equations are ode 113, ode15s, ode23s,
ode23t, and ode23tb. The function odel!3 uses a variable order integration method for
nonlinear equations. The functions with names ending with the letters s, t, or tb are
specially suited for solving stiff equations. Stiff equations [5] are a set of first-order
nonlinear equations with a large difference in their time scales (e.g. solution to each
equation may have a significantly different time for reaching a steady state). The normal
solution procedure that takes into account only the shortest time scale of stiff equations
may either fail to converge, or may require very large number of time steps to arrive
at a steady state. Hence, stiff equations require special solution procedures [5]. We will
consider the more common variety of nonlinear equations (i.e. non-stiff equations) that
can be solved using ode23, odel!3, and ode45. These functions are used as follows to
obtain a solution to a set of nonlinear state-equations:

»[t,X] = ode23(@fun,tspan,XO,options); <enter>

where @fun denotes a user supplied M-file, fun.m, in which the time derivative of the
state-vector, x (1)(r), is evaluated using Eq. (4.84), tspan = [ti tl t2 13 .. .tf] is a row
vector containing the initial time, ti, at which the initial condition vector, xO, is specified,
any intermediate times, tl, t2, t3, ..., at which the solution is desired (optional), and the
final time, tf, and t is a vector containing the time points at which the returned solution.

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

208 SOLVING THE STATE-EQUATIONS

x, is obtained. The returned matrix x contains as many rows as there are the time points,
and each column of x corresponds to a state variable. The first executable statement of
the M-fileywn.ra should be the following:

»function xdot = (t,x)

and the remaining statements offun.m should evaluate the derivative of the state-vector,
xdot, based on the state-vector, x, and time, t. Note that the input vector, u(r), is internal to
the M-file/wn.m, i.e. it is not used directly in ode23, odel!3 or ode45, but only indirectly
through xdot. The fourth input argument, options, can be used to specify relative error
and absolute error tolerances, Reltol (a scalar) and Abstol (a vector of the same size
as x), respectively, for convergence through the function odeset. This ensures that the
error in the ith component of the solution vector, JC,, does not exceed the greater number
between Reltol\xi\ and Abstol(i). If options are not specified, then the default values of
relative tolerance of 0.001 and absolute tolerance of 10~6 are used. For more information
on the ode functions use the MATLAB's help command.

Example 4.12

Consider a double-pendulum (Figure 1.5). A choice of the state variables for this
fourth order system is xi(r) = 6\(t), x2(t) = 92(t), x3(t) = 0,(I)(f); x4(t) = 02\t),
which results in the following state-equations:

4(0 sin(x2(0 -

m2)gsin(;ti(f))]/[Li(mi + m2) - m2L\ cos2(jr2(0 -

jc2(0) + L,jc3
2(/)sin(jr2(f) -jc,(r)) + Lix(

3
l}(t)cos(x2(t)

- jc, (r))]/L2 + u(t)/(m2L$) (4.93)

where u(t) is the input torque applied on the mass, m2. Note that the last state-
equation has a term involving x3

l\t) on the right-hand side. This has been done for
the sake of brevity (you can substitute x3

]\t) from the previous state-equation
into the last state-equation to obtain the state-equations in explicit form). It is
desired to obtain the solution of Eq. (4.93) for the initial condition x(0) = [0.7 rad.;
1.4 rad.; 0 rad./s; 0 rad./s]r and input, u(t) = 0.01 sin(5r)W-m. The function M-
file for evaluating the time derivative of the state-vector, x (1)(f), is called doub.m
and is tabulated in Table 4.7. Note that the input, u(t), must be specified within
the function file doub.m, while the initial condition is specified in the call to the
Runge-Kutta solver (either ode23 or ode45).

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

NUMERICAL SOLUTION OF NONLINEAR STATE-EQUATIONS 209

Table 4.7 Listing of the M-file doub.m

doub.m

function xp=doub(t,x)
% Nonlinear state-equations for a double-pendulum, excited
% by input, u(t) , torque acting on mass m2.
% x=[theta1 theta2 thetadotl thetadot2]
% xp is the time derivative of the state-vector, x.
% copyright(c)2000 by Ashish Tewari
m1=1;m2=2;l1=1;12=2;g=9.8;
u=0.01*sin(5*t);
x p (1 , 1) = x (3) ;
xp (2 ,1)=x (4) ;
x 2 1 = x (2) - x (1) ;
xp(3,1)=(m2*H*x(3)*x(3)*s in(x21)*cos(x21)+m2* l2*x(4)*x(4)*s in(x21)

+ m2*g*s in (x (2)) *cos (x21) - (m1+m2)*g*s in (x (1))) / ((m1+m2) * l1 - . . .
m2*H*cos(x21) * cos (x21)) ;

xp(4 ,1) = - (g*s in(x(2))+ l1*x(3)*x(3)*s in(x21)+H*xp(3)*cos(x21)) / l2
+u/(m2*12*12);

ode23.m; ode45.m

2

1

0

-1

-2
4 6

Time (s)

10

Figure 4.15 The calculated state variables, xi(f) = 6-\(f) and X2(f) = #2(0 for the double-
pendulum, Example 4.12

Let us compare the solutions obtained using ode23 and ode45, as follows:

»[t1,x1]= ode23(@doub, [0 10], [0.7 1.4 0 0] ') ; <enter>

»[t2,x2]= ode45(@doub, [0 10], [0.7 1.4 0 0] ') ; <enter>

»subplot(211), p lo t (t1 ,x1(: ,1) , t2 ,x2(: ,1)) , hold on, subplot(212),
p lo t (t1 ,x1(: ,2) , t2 ,x2(: ,2)) <enter>

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

210 SOLVING THE STATE-EQUATIONS

10

5

0

-5

-10

ode23. m; ode45. m

0 2 4 6

Time (s)

8 10

-5
4 6

Time (s)

10

Figure 4.16 The calculated state variables, x3 (t) = 0{]' (t), and X4 (0 = ̂ '' (f) k>r ̂ e double-
pendulum, Example 4.12

The resulting plots of Jti(r) and Jt2(0 are shown in Figure 4.15. Figure 4.16
plotting xi(t) and x^(t} is obtained by the following commands:

»newfig <enter>

»subplot(211), plot(t1,x1(:,3),t2 lx2(:,3)) l hold on, subplot(212),
plot(t1,x1(:,4)>t2,x2(:,4)) <enter>

Note that in Figures 4.15 and 4.16, a very small difference is observed between
the state variables calculated by ode23.m and those calculated by ode45.m. This
difference is seen to increase with time, indicating a larger truncation error for
the third order Runge-Kutta method of ode23.m when compared to the fifth order
Runge-Kutta method of ode45. Since the truncation error is added up after each
time step, there is an error accumulation as time increases. The double-pendulum
falls into a special category of nonlinear systems, called chaotic systems, which were
discussed in Section 1.3. Figure 1.6 compared the state variable, .*2(/), calculated
for two very slightly different initial conditions and a zero input, and was generated
using ode45. Figure 1.6 showed a large difference in the response, *2(r), when the
initial conditions differed by a very small amount, which is the hallmark of a chaotic
system.

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

_ NUMERICAL SOLUTION OF NONLINEAR STATE-EQUATIONS _ 211

Example 4.13

Let us consider another interesting nonlinear system, called the wing-rock
phenomenon. Wing-rock is a special kind of rolling and yawing motion observed
in modern fighter type aircraft when operating at a large angle of attack (defined as
the angle made by the longitudinal axis of the aircraft and the direction of flight).
The nonlinear state-equations modeling the wing-rock dynamics of a fighter aircraft
are the following [6J:

Lrx5(t)

4 (t) =x5(t)
(
5
l}(t) = -Npx2(t) - Npx4(t) - Nrx5(t) (4.94)

where the state variables are, x\(t): bank angle (rad.), x2(t): roll-rate (rad./s),
aileron deflection angle (rad.), X4(t): sideslip angle (rad.), and x^(t): sideslip-rate
(rad./s). The input, u(t), is the desired aileron deflection (rad.). The constants &>,
/Z j , ^L2, b\, b2, LS, Lp, Lr, Np, Np, and Nr depend on the inertial and aerodynamic
properties of the aircraft, while the constant k is the aileron-actuator's time-constant
(the aileron is an aerodynamic control surface which is deployed using a first order
actuator). Let us obtain the solution to Eq. (4.94) when the initial condition is
x(0) = [1.0 rad.; 0.5 rad./s; 0 rad.; 0 rad.; 0 rad./s]r and the input is zero. The time
derivative of state-vector, x(1)(0, is evaluated using the M-file called wrock.m, which
is tabulated in Table 4.8.

Using ode45, the initial response (i.e. response when u(t) = 0) is obtained as
follows:

»[t,x]= ode45(@wrock, [0 700], [0.2 0 0 0 0]'); <enter>

The plot of the bank angle, x\(t), from / = 0 s to / = 700 s is shown in
Figure 4.17. Note that instead of decaying to zero in the limit t -> oo, the initial
response keeps on oscillating with a constant time period, and an amplitude which
becomes constant in the limit t —> oo. Such a motion is called a limit cycle motion.
Note that while the system is not unstable (i.e. the response does not tend to infinity
in the limit t -> oo), a limit cycle response is undesirable from weapons aiming
and delivery considerations, and also because it may lead to structural fatigue in
the aircraft (or other mechanical systems) thereby causing the wings to come-off.
Figure 4.18 shows a plot of x2(t) against x\(t). Such a plot in which the time
derivative of a variable (x2(t) = x\l\t) is plotted against the variable itself (x\(t)) is
called a phase-plane plot. Figure 4.18 shows that the limit cycle motion corresponds
to a limiting outer boundary in the phase-plane plot, indicating that the amplitude

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

212 SOLVING THE STATE-EQUATIONS

Table 4.8 Listing of the M-file wrock.m

wrock.m

function xdot=wrock(t,x)
% nonlinear state-equations for the wing-rock problem;
% including first order aileron actuator
% xdot is the time derivative of the state-vector, x.
% copyright(c)2000 by Ashish Tewari
a=[-0.05686 0.03254 0.07334 -0.3597 1.4681];
% pure-rolling mode natural-frequency squared:-
w=-0.354*a(1);
% aileron-actuator time-constant:-
k=1/0.0495;
% linear aerodynamic coefficients:-
lbet=-0.02822;lr=0.1517;np=-0.0629;nbet=1.3214;nr=-0.2491;ldelt=1;
% nonlinear inertial and aerodynamic coefficients:-
u(1)=0.354*a(2)-0.001;
u(2)=0.354*a(4);
b(1)=0.354*a(3);
b(2)=0.354*a(5);
% desired aileron deflection as the input, 'f':-
f=0;
% the nonlinear state-equations:-
xdot(1,l)=x(2);
xdot(2,1) = -w*x(1)+u(1)*x(2)+b(1)*x(2r3+u(2)*x(2)*x(ir2

+b(2)*x(1)*x(2)"2...+ldelt*x(3)+lbet*x(4)-lr*x(5);
xdot(3,1)=-k*x(3)+k*f;
xdot(4,1)=x(5);
xdot(5,1)=-nbet*x(4)+nr*x(5)-np*x(2);

-0.6
0 100 200 300 400 500 600 700

Time (s)

Figure 4.17 Initial response of bank angle, xi (f), for the wing-rock problem of Example 4.13
showing a limit cycle motion (i.e. constant amplitude oscillation in the limit f —»• oc)

 EBSCOhost - printed on 10/27/2025 6:04 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use

