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222 CONTROL SYSTEM DESIGN IN STATE-SPACE

where
1 0 0 0 0
A= —-K/3 (-2-K/3) -K/3 —-1/3 | . B— K/3
- K/2 K/2 (-3+K/2) 172 |’ T | —K/2
—-K -K -K 0 K
C=1([1 11 0 D=0 5.9)

The closed-loop system is of fourth order, as expected. The closed-loop poles are
the eigenvalues of A, i.e. the solutions of the following characteristic equation:

a-1 0 0 0
| K3 a+2+4K/3) K/3 131
M=Al=| o kT ae3ok 12| =0
K K K A
(5.10)

It is evident from Eq. (5.10) that, irrespective of the value of K, one of the eigenvalues
of A is A = 1, which corresponds to a closed-loop pole at s = 1. Hence, irrespective of
the design parameter, K, we have an unstable closed-loop system, which means that
the chosen design approach of cancelling an unstable pole with a zero does not work.
More importantly, even though we have an unconditionally unstable closed-loop system,
the closed-loop transfer function given by Eq. (5.4) fools us into believing that we can
stabilize the closed-loop system by selecting an appropriate value for K. Such a system
which remains unstable irrespective of the values of the control design parameters is
called an unstabilizable system. The classical design approach of Example 5.1 gave us
an unstabilizable closed-loop system, and we didn’t even know it! Stabilizability of a
system is a consequence of an important property known as controllability, which we
will consider next. (Although we considered a closed-loop system in Example 5.2, the
properties controllability and stabilizability are more appropriately defined for a plant.)

5.2 Controllability

When as children we sat in the back seat of a car, our collective effort to move the car
by pushing on the front seat always ended in failure. This was because the input we
provided to the car in this manner, no matter how large, did not affect the overall motion
of the car. There was something known as the third law of Newton, which physically
prevented us from achieving our goal. Hence, for us the car was uncontrollable when we
were sitting in the car. The same car could be moved, however, by stepping out and giving
a hefty push to it from the outside; then it became a controllable system for our purposes.
Controllability can be defined as the property of a system when it is possible to take
the system from any initial state, X(tp), to any final state, x(t¢), in a finite time, (tr — 1p).
by means of the input vector, u(z), fp <t < t;. It is important to stress the words any
and finite, because it may be possible to move an uncontrollable system from some initial
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CONTROLLABILITY 223

states to some final states, or take an infinite amount of time in moving the uncontrollable
system, using the input vector, u (f). Controllability of a system can be easily determined
if we can decouple the state-equations of a system. Each decoupled scalar state-equation
corresponds to a sub-system. If any of the decoupled state-equations of the system is
unaffected by the input vector, then it is not possible to change the corresponding state
variable using the input, and hence, the sub-system is uncontrollable. If any sub-system
is uncontrollable, i.e. if any of the state variables is unaffected by the input vector, then
it follows that the entire system is uncontrollable.

Example 5.3

Re-consider the closed-loop system of Example 5.2. The state-equations of the
closed-loop system (Eqgs. (5.7)-(5.9)) can be expressed in scalar form as follows:

xV () = x(r) (5.11a)
(1) = —Kxi(1)/3 — Q2+ K /3)x(1) — Kx3(t)/3

— x4(1)/3 + Kya(1)/3 (5.11b)
V(1) = Kx1(1)/2 4+ Kxa(1) /2 + (=3 + K /2)x3(1)

+ x4(2)/2 — Kyq(1)/2 (5.11c)
() = —Kxi(t) — Kxa(t) — Kx3(t) + Kya (1) (5.11d)

On examining Eq. (5.11a), we find that the equation is decoupled from the other
state-equations, and does not contain the input to the closed-loop system, y,(t).
Hence, the state variable, x;(¢), is entirely unaffected by the input, y,(¢), which
implies that the system is uncontrollable. Since the uncontrollable sub-system
described by Eq. (5.11a) is also unstable (it corresponds to the eigenvalue A = 1),
there is no way we can stabilize the closed-loop system by changing the controller
design parameter, K. Hence, the system is unstabilizable. In fact, the plant of this
system given by the state-space representation of Eq. (5.5) is itself unstabilizable,
because of the zero in the matrix By corresponding to the sub-system having eigen-
value A = 1. The unstabilizable plant leads to an unstabilizable closed-loop system.

Example 5.3 shows how a decoupled state-equation indicating an uncontrollable and
unstable sub-system implies an unstabilizable system.

Example 5.4

Let us analyze the controllability of the following system:

o

0
B= _(1) (5.12)
1

S O = O

1
0
0
0

je= i el an]
oo oo
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224 CONTROL SYSTEM DESIGN IN STATE-SPACE

The system is unstable, with four zero eigenvalues. Since the state-equations of the
system are coupled, we cannot directly deduce controllability. However, some of
the state-equations can be decoupled by transforming the state-equations using the
transformation z(t) = Tx(t), where

1 1
1 -1
0 o
0 O

T= (5.13)

- — oo

0
0
1
-1

The transformed state-equations can be written in the following scalar form:

2" () = x5(0) (5.142)
20y = xj(r) (5.14b)
(1) =0 (5.14c)
2 = —2u() (5.14d)

Note that the state-equation, Eq. (5.14c) denotes an uncontrollable sub-system in
which the state variable, z3(z), is unaffected by the input, u (). Hence, the system
is uncontrollable. However, since the only uncontrollable sub-system denoted by
Eq. (5.14c¢) is stable (its eigenvalue is, A = 0), we can safely ignore this sub-system
and stabilize the remaining sub-systems denoted by Eqgs. (5.14a),(5.14b), and (5.14d),
using a feedback controller that modifies the control input, #(t). An uncontrol-
lable system all of whose uncontrollable sub-systems are stable is thus said to be
stabilizable. The process of stabilizing a stabilizable system consists of ignoring
all uncontrollable but stable sub-systems, and designing a controller based on the
remaining (controllable) sub-systems. Such a control system will be successful,
because each ignored sub-system will be stable.

In the previous two examples, we could determine controllability, only because certain
state-equations were decoupled from the other state-equations. Since decoupling state-
equations is a cumbersome process, and may not be always possible, we need another
criterion for testing whether a system is controllable. The following algebraic controlla-
bility test theorem provides an easy way to check for controllability.

Theorem
A linear, time-invariant system described by the matrix state-equation, X'V (t) = Ax(t) +
Bu(r) is controllable if and only if the controllability test matrix

P=[B;: AB; A’B; A’B; ...;: A" 'B]
is of rank n, the order of the system.

(The rank of a matrix, P, is defined as the dimension of the largest non-zero
determinant formed out of the matrix, P (see Appendix B). If P is a square matrix,
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the largest determinant formed out of P is |P|. If P is not a square matrix, the largest
determinant formed out of P is either the determinant formed by taking all the rows
and equal number of columns, or all the columns and equal number of rows of P. See
Appendix B for an illustration of the rank of a matrix. Note that for a system of order
n with r inputs, the size of the controllability test matrix, P, is (n x nr). The largest
non-zero determinant of P can be of dimension n. Hence, the rank of P can be either less
than or equal to n.)

A rigourous proof of the algebraic controllability test theorem can be found in
Friedland [2]. An analogous form of algebraic controllability test theorem can be
obtained for linear, time-varying systems [2]. Alternatively, we can form a time-varying
controllability test matrix as

P() = [B1); A@®B@); A*0)B@); A'0B@); .0 A"'OB@)]  (5.15)

and check the rank of P(¢) for all times, ¢ > f,, for a linear, time-varying system. If at any
instant, ¢, the rank of P(¢) is less than n, the system is uncontrollable. However, we must
use the time-varying controllability test matrix of Eq. (5.15) with great caution, when the
state-coefficient matrices are rapidly changing with time, because the test can be practically
applied at discrete time step — rather than at all possible times (see Chapter 4) — and there
may be some time intervals (smaller than the time steps) in which the system may be
uncontrollable.

Example 5.5

Using the controllability test theorem, let us find whether the following system is

controllable: .
-2 1 1 l’
A_.[_l _3], B_[O] (5.16) g

The controllability test matrix is the following:

P=[B: AB]=| 2 5.17) §

0 — [ &
The largest determinant of P is |P| = —1 5 0, Hence the rank of P is equal to 2,
the order of the system. Thus, by the controllability test theorem, the system is §
controllable. .

Applying the algebraic controllability test involves finding the rank of P, and checking
whether it is equal to n. This involves forming all possible determinants of dimension n
out of the matrix P, by removing some of the columns (if m > 1), and checking whether
all of those determinants are non-zero. By any account, such a process is cumbersome if
performed by hand. However, MATLAB provides us the command rank(P) for finding
the rank of a matrix, P. Moreover, MATLAB’s Control System Toolbox (CST) lets you
directly form the controllability test matrix, P, using the command ctrb as follows:

>>P = ctrb(A, B) <enter>
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226 CONTROL SYSTEM DESIGN IN STATE-SPACE

or

>>P = ctrb(sys) <enter>

where A and B are the state coefficient matrices of the system whose LTI object is sys.

Example 5.6

Let us verify the uncontrollability of the system given in Example 5.4,
using the controllability test. The controllability test matrix is constructed as
follows:

>>A=[0 0 1 0; zeros(1,3)1; zeros(2,4)]; B=[0 0 -1 1]’; P=ctrb(A,B)

<enter>
P =
o -1t 0 O
0 1 0 O
-1 0 0 O
1 0 0 O

Then the rank of P is found using the MATLAB command rank:

>>rank(P) <enter>
ans =

2

Since the rank of P is less than 4, the order of the system, it follows from the
controllability test theorem that the system is uncontrollable.

What are the causes of uncontrollability? As our childhood attempt of pushing a car
while sitting inside it indicates, whenever we choose an input vector that does not affect
all the state variables physically, we will have an uncontrollable system. An attempt to
cancel a pole of the plant by a zero of the controller may also lead to an uncontrollable
closed-loop system even though the plant itself may be controllable. Whenever you see a
system in which pole-zero cancellations have occurred, the chances are high that such a
system is uncontrollable.

Example 5.7

Let us analyze the controllability of the closed-loop system of configuration shown
in Figure 2.32, in which the controller, H(s), and plant, G(s), are as follows:

HGs)=K(s—2)/G+1); G(s)=3/(s—2) (5.18)
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The closed-loop transfer function in which a pole-zero cancellation has occurred at
s = 2 is the following:

Y($)/Ya(s) = G(s)H(s)/[1 + G(s)H(s)] =3K /(s +3K + 1)  (5.19)
The Jordan canonical form of the plant is the following:
Ap=2; By=3 CG=1; Dp=0 (5.20)

Note that the plant is controllable (the controllability test matrix for the plant is
just P = By, which is of rank 1). The Jordan canonical form of the controller is the
following:

Ac=-1; B.=K; Ci=-3;, D.=K (5.21) 1§

The closed-loop state-space representation is obtained using Eqgs. (3.146)—(3.148)
as the following:

_[e-3k) =91 . [3k
(20 3] we[E]

C=1[1 0;: D=0 (5.22) |

The controllability test matrix for the closed-loop system is the following:

P—[B AB] — [31( —(9K“+3K):l

K —GK2+K) (3.23)

To see whether P is of rank 2 (i.e. whether P is non-singular) let us find its
determinant as follows:

3K —(9K?+3K) 3 2 3 2 !
‘ froed = R, - o = 2
|P| K —0GK2+K) 9K° —3K“+9K " +3K-=0 (5.24) .
Since |[P| =0, P is singular, its rank is less than 2. Therefore, the closed-
loop system is uncontrollable no matter what value of the controller
design parameter, K, is chosen. Hence, a controllable plant has led to
an uncontrollable closed-loop system in which a pole-zero cancellation has
occurred.

Other causes of uncontrollability could be mathematical, such as using superfluous
state variables (i.e. more state variables than the order of the system) when modeling
a system; the superfluous state variables will be definitely unaffected by the inputs to
the system, causing the state-space representation to be uncontrollable, even though the
system may be physically controllable. A rare cause of uncontrollability is too much
symmetry in the system’s mathematical model. Electrical networks containing perfectly
balanced bridges are examples of systems with too much symmetry. However, perfect
symmetry almost never exists in the real world, or in its digital computer model.
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