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Now that we know how to determine the controllability of a system, we can avoid
the pitfalls of Examples 5.1 and 5.7, and are ready to design a control system using
state-space methods.

5.3 Pole-Placement Design Using Full-State Feedback

In Section 5.1 we found that it may be required to change a plant's characteristics by using
a closed-loop control system, in which a controller is designed to place the closed-loop
poles at desired locations. Such a design technique is called the pole-placement approach.
We also discussed in Section 5.1 that the classical design approach using a controller
transfer function with a few design parameters is insufficient to place all the closed-loop
poles at desired locations. The state-space approach using full-state feedback provides
sufficient number of controller design parameters to move all the closed-loop poles
independently of each other. Full-state feedback refers to a controller which generates
the input vector, u(0, according to a control-law such as the following:

u(r) = K[Xd(r) - x(01 - KdXd(f) - Knxn(» (5.25)

where x(0 is the state-vector of the plant, Xd(0 is the desired state-vector, xn(f) is the
noise state- vector and K, K<j and Kn are the controller gain matrices. The desired state-
vector, xj(0, and the noise state- vector, xn(0, are generated by external processes, and
act as inputs to the control system. The task of the controller is to achieve the desired
state-vector in the steady state, while counteracting the affect of the noise. The input
vector, u(f), generated by Eq. (5.25) is applied to the plant described by the following
state and output equations:

x(1)(0 = Ax(f) + Bu(r) + Fxn(r) (5.26)

y(0 = Cx(r) + Du(r) + Exn(/) (5.27)

where F and E are the noise coefficient matrices in the state and output equations,
respectively. Designing a control system using full-state feedback requires that the plant
described by Eq. (5.26) must be controllable, otherwise the control input generated using
Eq. (5.25) will not affect all the state variables of the plant. Furthermore, Eq. (5.25)
requires that the all the state variables of the system must be measurable, and capable of
being fed back to the controller. The controller thus consists of physical sensors, which
measure the state variables, and electrical or mechanical devices, called actuators, which
provide inputs to the plant based on the desired outputs and the control-law of Eq. (5.25).
Modern controllers invariably use digital electronic circuits to implement the control-law
in a hardware. The controller gain matrices, K, Kj, and Kn are the design parameters of
the control system described by Eqs. (5.25)-(5.27). Note that the order of the full-state
feedback closed-loop system is the same as that of the plant. A schematic diagram of the
general control system with full-state feedback is shown in Figure 5.2.

Let us first consider control systems having Xd(0 =0. A control system in which the
desired state-vector is zero is called a regulator. Furthermore, for simplicity let us assume
that all the measurements are perfect, and that there is no error committed in modeling
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POLE-PIACEMENT DESIGN USING FULL-STATE FEEDBACK 229

Figure 5.2 Schematic diagram of a general full-state feedback control system with desired state,
)/ and noise, xn(f)

the plant by Eqs. (5.26) and (5.27). These two assumptions imply that all undesirable
inputs to the system in the form of noise, are absent, i.e. \n(t) = 0. Consequently, the
control-law of Eq. (5.25) reduces to

u(0 = -Kx(0 (5.28)

and the schematic diagram of a noiseless regulator is shown in Figure 5.3.
On substituting Eq. (5.28) into Eqs. (5.26) and (5.27), we get the closed-loop state and

output equations of the regulator as follows:

x(1)(0 = (A-BK)x(O

y(0 = (C - DK)x(r)

(5.29)

(5.30)

Equations. (5.29) and (5.30) indicate that the regulator is a homogeneous system,
described by the closed-loop state coefficient matrices ACL = A — BK, BCL = 0> CCL =
C — DK, and DCL = 0. The closed-loop poles are the eigenvalues of ACL- Hence, by
selecting the controller gain matrix, K, we can place the closed-loop poles at desired
locations. For a plant of order n with r inputs, the size of K is (r x h). Thus, we have a
total of r • n scalar design parameters in our hand. For multi-input systems (i.e. r > 1),
the number of design parameters are, therefore, more than sufficient for selecting the
locations of n poles.

Figure 5.3 Schematic diagram of a full-state feedback regulator (i.e. control system with a zero
desired state-vector) without any noise
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230 _ CONTROL SYSTEM DESIGN IN STATE-SPACE _

Example 5.8

Let us design a full-state feedback regulator for the following plant such that the
closed-loop poles are s = —0.5 ± i:

The plant, having poles at s = 1 and s = — 2, is unstable. Also, the plant is control-
lable, because its decoupled state-space representation in Eq. (5.31) has no elements
of B equal to zero. Hence, we can place closed-loop poles at will using the following
full-state feedback gain matrix:

K = [ A T i ; K2] (5.32)

The closed-loop state-dynamics matrix, ACL = A — BK, is the following:

(5.33)
AI (-24- K2)

The closed-loop poles are the eigenvalues of ACL, which are calculated as follows:

= (A - 1 + ffiXA. + 2 - K2) + K} K2 = 0 (5.34)

The roots of the characteristic equation (Eq. (5.34)) are the closed-loop eigenvalues
given by

-K2+l)± 0.5(A'1 + K - 2K\K2 - 6Kl - 2K2 + 9)

= -0.5 ± / (5.35)

Solving Eq. (5.35) for the unknown parameters, K\ and K2, we get

Ki = K2 = 13/12 (5.36)

Thus, the full-state feedback regulator gain matrix which moves the poles from
s = l,s = -2tos = -0.5 ± / is K = [13/12; 13/12] .

5.3.1 Pole-placement regulator design for single-input plants

Example 5.8 shows that even for a single-input, second order plant, the calculation for
the required regulator gain matrix, K, by hand is rather involved, and is likely to get out
of hand as the order of the plant increases beyond three. Luckily, if the plant is in the
controller companion form, then such a calculation is greatly simplified for single-input
plants. Consider a single-input plant of order n whose controller companion form is the
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POLE-PLACEMENT DESIGN USING FULL-STATE FEEDBACK 231

following (see Chapter 3):
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(5.37)

where « o , . . . , an-\ are the coefficients of the plant's characteristic polynomial \s\ — A| =
s" + an-\s

n~[ + . . . + d[S 4- flo- The full-state feedback regulator gain matrix is a row
vector of n unknown parameters given by

K2; (5.38)

It is desired to place the closed-loop poles such that the closed-loop characteristic
polynomial is the following:

sl - ACL| = \sl - A + BK| = 5" an-2s (5.39)

where the closed-loop state dynamics matrix, ACL = A — BK, is the following:

ACL -

~ (—«,,_! — K\
1

0
0

0
0

) (— 0«-2 — #2)
0
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0

0
0

(—a,, -3 — KT,)
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0
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0

(-OQ — Kn)-
0
0
0

0
1

(5.40)

It is interesting to note that the closed-loop system is also in the controller companion
form! Hence, from Eq. (5.40), the coefficients of the closed-loop characteristic polynomial
must be the following:

an-2 = fln-2 + a\ — a\

or, the unknown regulator parameters are calculated simply as follows:

In vector form, Eq. (5.42) can be expressed as

Kn

(5.41)

(5.42)

(5.43)

where of = [an-\\ QLn-2\ • • •', «i; «o] and a = \an-\; an-2', • • •', a\; a0]. If the state-space
representation of the plant is not in the controller companion form, a state-transformation
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232 CONTROL SYSTEM DESIGN IN STATE-SPACE

can be used to transform the plant to the controller companion form as follows:

x'(r) = Tx(f); A' = TAT~'; B' = TB (5.44)

where x'(r) is the state-vector of the plant in the controller companion form, x(/) is the
original state-vector, and T is the state-transformation matrix. The single-input regulator's
control-law (Eq. (5.28)) can thus be expressed as follows:

«(0 = - -!„'/= -KT~'x'(0 (5.45)

Since KT l is the regulator gain matrix when the plant is in the controller companion
form, it must be given by Eq. (5.43) as follows:

or

KT~' = a - a

K = (a - a)T

(5.46)

(5.47)

Let us derive the state-transformation matrix, T, which transforms a plant to its controller
companion form. The controllability test matrix of the plant in its original state-space
representation is given by

P= [B; AB; A2B; . . . ; A^B] (5.48)

Substitution of inverse transformation, B = T~*B', and A = T~!A'T into Eq. (5.48)
yields

A'B'; (A')2B';' 2 ' (AT~'B'] = (5.49)

where P* is the controllability test matrix of the plant in controller companion form. Pre-
multiplying both sides of Eq. (5.49) with T, and then post-multiplying both sides of the
resulting equation with P-1 we get the following expression for T:

T = PI*"1 (5.50)

You can easily show that P7 is the following upper triangular matrix (thus called because
all the elements below its main diagonal are zeros):

(5.51)
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POLE-PIACEMENT DESIGN USING FULL-STATE FEEDBACK 233

Also note from Eq. (5.51) that the determinant of P' is unity, and that (P') ' is obtained
merely by replacing all the elements above the main diagonal of P' by their negatives.
Substituting Eq. (5.50) into Eq. (5.47), the regulator gain matrix is thus given by

K = (a - a)P'P (5.52)

Equation (5.52) is called the Ackermann's pole-placement formula. For a single-input
plant considered here, both P and P' are square matrices of size (n x «). Note that if the
plant is uncontrollable, P is singular, thus T = p'p~' does not exist. This confirms our
earlier requirement that for pole-placement, a plant must be controllable.

Example 5.9

Let us design a full-state feedback regulator for an inverted pendulum on a moving
cart (Figure 2.59). A linear state-space representation of the plant is given by
Eqs. (3.31) and (3.32), of which the state coefficient matrices are the following:

A =

C =

0 0 1 0
0 0 0 1

+ m)g/(ML) 0 0 0
-mg/M 0 0 0

0
0

•I/(ML)
\/M

1 0 0 0
0 1 0 0 (5.53)

The single-input, u(t), is a force applied horizontally to the cart, and the two outputs
are the angular position of the pendulum, 9 ( t ) , and the horizontal position of the
cart, x(t). The state-vector of this fourth order plant is x ( t ) = [9(t)\ x ( t ) ; 0 ( l ) ( t ) ;
x ( l ) ( t ) ] T . Let us assume the numerical values of the plant's parameters as follows:
M = 1 kg, m — 0.1 kg, L — 1 m, and g = 9.8 m/s2. Then the matrices A and B
are the following:

0 0 1 0
0 0 0 1

10.78 0 0 0
-0.98 0 0 0

0'
0

-1
1

(5.54)

Let us first determine whether the plant is controllable. This is done by finding the
controllability test matrix, P, using the MATLAB (CST) command ctrb as follows:

»P = ctrb(A,B)) <enter>

P =

0
0
-1.0000
1.0000

-1.0000
1.0000
0
0

0
0
-10.7800
0.9800

-10.7800
0.9800
0
0
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234 CONTROL SYSTEM DESIGN IN STATE-SPACE

The determinant of the controllability test matrix is then computed as follows:

»det(P) <enter>

ans =
-96.0400

Since |P| ^ 0, it implies that the plant is controllable. However, the magnitude of
|P| depends upon the scaling of matrix P, and is not a good indicator of how far
away P is from being singular, and thus how strongly the plant is controllable.
A better way of detecting the measure of controllability is the condition number,
obtained using the MATLAB function cond as follows:

»cond(p) <enter>

ans =
12.0773

Since condition number of P is small in magnitude, the plant is strongly controllable.
Thus, our pole-placement results are expected to be accurate. (Had the condition
number of P been large in magnitude, it would have indicated a weakly controllable
plant, and the inversion of P to get the feedback gain matrix would have been
inaccurate.) The poles of the plant are calculated by finding the eigenvalues of the
matrix A using the MATLAB command damp as follows:

»damp(A) <enter>

Eigenvalue Damping Freq. (rad/sec)
3.2833 -1.0000 3.2833

0 -1.0000 0
0 -1.0000 0

-3.2833 1.0000 3.2833

The plant is unstable due to a pole with positive real-part (and also due to a
pair of poles at s = 0). Controlling this unstable plant is like balancing a vertical
stick on your palm. The task of the regulator is to stabilize the plant. Let us make
the closed-loop system stable, by selecting the closed-loop poles as s = — 1 ±i ,
and s = — 5 ± 5i. The coefficients of the plant's characteristic polynomial can be
calculated using the MATLAB command poly as follows:

»a=poly(A) <enter>

a =

1.0000 0.0000 -10.7800 0 0

which implies that the characteristic polynomial of the plant is s4 — 10.78s2 = 0.
Hence, the polynomial coefficient vector, a, is the following:

a= [0; -10.78; 0; 0] (5.55)
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The characteristic polynomial of the closed-loop system can also be calculated using
the command poly as follows:

»v = [-1+j; - 1 - j ; -5+5*j; -5-5*j]; alpha = poly(v) <enter>

alpha =

1 12 72 120 100

which implies that the closed-loop characteristic polynomial is a4 + \2a3 + 72a2 +
120a + 100, and the vector a is thus the following:

a = [12; 72; 120; 100] (5.56)

Note that the MATLAB function poly can be used to compute the characteristic
polynomial either directly from a square matrix, or from the roots of the char-
acteristic polynomial (i.e. the eigenvalues of a square matrix). It now remains to
find the upper triangular matrix, P', by either Eq. (5.49) or Eq. (5.51). Since a
controller companion form is generally ill-conditioned (see Chapter 3), we would
like to avoid using Eq. (5.49) which involves higher powers of the ill-conditioned
matrix, A'. From Eq. (5.51), we get

1 0 10.78 0
0 1 0 10.78
0 0 1 0
0 0 0 1

(5.57)

Finally, the regulator gain matrix is obtained through Eq. (5.52) as follows:

»Pdash=[1 0 10.78 0; 0 1 0 10.78; 0 0 1 0; 0 0 0 1 ] ; a=[0 -10.78 0 0 ] ;

alpha=[12 72 120 100]; K = (alpha-a)*Pdash*inv(P) <enter>

K =

-92.9841 -10.2041 -24.2449 -12.2449

The regulator gain matrix is thus the following:

K = [-92.9841; -10.2041; -24.2449; -12.2449] (5.58)

Let us confirm that the eigenvalues of the closed-loop state-dynamics matrix, ACL =
A — BK, are indeed what we set out to achieve as follows:

»ACL = A-B*K <enter>

ACL =
0 0 1.0000 0
0 0 0 1.0000
-82.2041 -10.2041 -24.2449 -12.2449
92.0041 10.2041 24.2449 12.2449
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236 CONTROL SYSTEM DESIGN IN STATE-SPACE

The closed-loop poles are then evaluated by the command eig as follows:

»eig(ACL) <enter>

ans =
-5.0000+5.00001
-5.0000-5.0000i
-1.0000+1.OOOOi
-1.0000-1.00001

Hence, the desired locations of the closed-loop poles have been obtained.

The computational steps of Example 5.9 are programmed in the MATLAB (CST)
function called acker for computing the regulator gain matrix for single-input plants
using the Ackermann's formula (Eq. (5.52). The command acker is used as follows:

»K = acker(A,B,V) <enter>

where A, B are the state coefficient matrices of the plant, V is a vector containing the
desired closed-loop pole locations, and K is the returned regulator gain matrix. Since
Ackermann's formula is based on transforming the plant into the controller companion
form, which becomes ill-conditioned for large order plants, the computed regulator gain
matrix may be inaccurate when n is greater than, say, 10. The command acker produces
a warning, if the computed closed-loop poles are more than 10% off from their desired
locations. A similar MATLAB (CST) function called place is also available for computing
the pole-placement regulator gain for single-input plants. The function place also provides
an output ndigits, which indicates the number of significant digits to which the closed-
loop poles have been placed. The design of Example 5.9 is simply carried out by using
the command place as follows:

»V = [ -1+ j ; - 1 - j ; -5+5*j; - 5 -5 * j ] ; K = place(A,B,V) <enter>

place: ndigits= 17

K =

-92.9841 -10.2041 -24.2449 -12.2449

The result is identical to that obtained in Example 5.9; ndigits = 17 indicates that the
locations of the closed-loop poles match the desired values up to 17 significant digits.

The locations of closed-loop poles determine the performance of the regulator, such as
the settling time, maximum overshoot, etc. (see Chapter 2 for performance parameters)
when the system is disturbed by a non-zero initial condition. A design is usually specified
in terms of such performance parameters, rather than the locations of the closed-loop
poles themselves. It is the task of the designer to ensure that the desired performance is
achieved by selecting an appropriate set of closed-loop poles. This is illustrated in the
following example.
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POLE-PLACEMENT DESIGN USING FULL-STATE FEEDBACK 237

Example 5.10

For the inverted-pendulum on a moving cart of Example 5.9, let us design a regu-
lator which achieves a 5% maximum overshoot and a settling time less than 1
second for both the outputs, when the cart is initially displaced by 0.01 m. The
state coefficient matrices, A, B, C, and D, of the plant are given in Eq. (5.53). The
initial condition vector has the perturbation to the cart displacement, x(t), as the
only non-zero element; thus, x(0) = [0; 0.01; 0; 0]r. Let us begin by testing whether
the regulator designed in Example 5.9 meets the performance specifications. This
is done by using the MATLAB (CST) function initial to find the initial response as
follows:

»t = 0:0.1:10; sysCL=ss(A-B*K, z e r o s ( 4 , 1 ) , C , D ) ; [ y , t , X ] = initial
(sysCL, [0 0.01 0 0] ' , t ) ; <enter>

where y, X, and t denote the returned output, state, and time vectors and sysCL is
the state-space LTI model of the closed-loop system. The resulting outputs y(f) =
[0(0; x(t)]T are plotted in Figure 5.4.

In Figure 5.4, both the responses are seen to have acceptably small maximum
overshoots, but settling-times in excess of 5 s, which is unacceptable. In order to
speed-up the closed-loop response, let us move all the poles deeper inside the left-
half plane by decreasing their real parts such that the new desired closed-loop poles
are s = —7.5 ± 7.5i, and s = —10 ± 10z. Then, the new regulator gain matrix, the
closed-loop dynamics matrix, and the initial response are obtained as follows:

Cart's displacement, x(t),
in meters

Pendulum's angular position,
9(t), in radians

4 6

Time (s)

10

Figure 5.4 Closed-loop initial response of the regulated inverted pendulum on a moving cart
to perturbation on cart displacement for the regulator gain matrix, K = [—92.9841; — 10.2041;
-24.2449;-12.2449]
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238 CONTROL SYSTEM DESIGN IN STATE-SPACE

»V=[-7.5+7.5*j -7.5-7.5* j -10+10*j -10-10*]] ' ; K = place(A,B,V) <enter>

place: ndigits= 19

K =

-2.91926+003 -2.29596+003 -5.7071e+002 -5.3571e+002
»t = 0:0.01:2; sysCL=ss(A-B*K, zeros(4,1),C,D); [ y , t ,X ] = initial(sysCL,

[0 0.01 0 0]',t); <enter>

The resulting outputs are plotted in Figure 5.5, which indicates a maximum over-
shoot of the steady-state values less than 4%, and a settling time of less than 1 s
for both the responses.

How did we know that the new pole locations will meet our performance requirements?
We didn't. We tried for several pole configurations, until we hit upon the one that met
our requirements. This is the design approach in a nutshell. On comparing Figures 5.4
and 5.5, we find that by moving the closed-loop poles further inside the left-half plane,
we speeded-up the initial response at the cost of increased maximum overshoot. The
settling time and maximum overshoot are, thus, conflicting requirements. To decrease
one, we have to accept an increase in the other. Such a compromise, called a trade-
off, is a hallmark of control system design. Furthermore, there is another cost associated
with moving the poles deeper inside the left-half plane - that of the control input. Note
that the new regulator gain elements are several times larger than those calculated in
Example 5.9, which implies that the regulator must now apply an input which is much

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

I I I
•Cart's displacement x(t), in meters

Pendulum's angular position,
0(f), in radians

0.5 1
Time (s)

1.5

Figure 5.5 Closed-loop initial response of the regulated inverted pendulum on a moving cart to
perturbation on cart displacement for the regulator gain matrix, K = [—2919.2; —2295.9; —570.71;
-535.71]
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POLE-PLACEMENT DESIGN USING FULL-STATE FEEDBACK 239

larger in magnitude than that in Example 5.9. The input, u(/) = — Kx(Y), can be calculated
from the previously calculated matrices, K and x, as follows:

»u = -K*X'; <enter>

The control inputs for the two values of the regulator gain matrix are compared in
Figure 5.6. The control input, u ( t ) , which is a force applied to the cart, is seen to be more
than 200 times in magnitude for the design of Example 5.10 than that of Example 5.9.
The actuator, which applies the input force to the cart, must be physically able to generate
this force for the design to be successful. The cost of controlling a plant is a function of
the largest control input magnitude expected in actual operating conditions. For example,
if the largest expected initial disturbance in cart displacement were 0.1 m instead of
0.01 m, a ten times larger control input would be required than that in Figure 5.6. The
larger the control input magnitude, the bigger would be the energy spent by the actuator in
generating the control input, and the higher would be the cost of control. It is possible to
minimize the control effort required in controlling a plant by imposing conditions - other
than pole-placement - on the regulator gain matrix, which we will see in Chapter 6.
However, a rough method of ensuring that the performance requirements are met with
the minimum control effort is to ensure that all the closed-loop poles are about the same
distance from the imaginary axis in the left-half plane. The poles in the left-half plane that
are farthest away from the imaginary axis dictate the control input magnitude, while the
speed of response (i.e. the settling time of the transients) is governed by the poles with
the smallest real parts, called the dominant poles. If some closed-loop poles are close to,
and some are very far from the imaginary axis, it implies that too much control energy is
being spent for a given settling time, and thus the design is inefficient. The most efficient
closed-loop configuration thus appears to be the one where all the poles are placed in the

1
<Do
,0

Q.

ou

20

10

0

m

\ \ i \ \

: K = [-291 9.2; -2295.9; -570.71; -535.71] _

\
\ ^ ^—

^-^ \ \ \ \ \
0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

0.1

S 0.1 h K = [-92.984;-10.204;-24.245;-12.245] -

|B 0.05

I 0
Q.

- -0.05
0 1 2 3 4 5 6

Time (s)

Figure 5.6 Control inputs of the regulated inverted pendulum on a moving cart for two designs of the
full-state feedback regulator
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Figure 5.7 Butterworth pattern of poles in the left-half plane for n = 2, 3, and 4

left half plane, roughly the same distance from the imaginary axis. To increase the speed
of the closed-loop response, one has to just increase this distance. One commonly used
closed-loop pole configuration is the Butterworth pattern, in which the poles are placed
on a circle of radius R centered at the origin, and are obtained from the solution of the
following equation:

(s/R)" =2" = - (5.59)

where n is the number of poles in the left-half plane (usually, we want all the closed-
loop poles in the left-half plane; then n is the order of the system). For n = 1, the
pole in the left-half plane satisfying Eq. (5.59) is s = —R. For n = 2, the poles in the
left-half plane satisfying Eq. (5.59) are the solutions of (s/R)2 + (s/R)V2 +1=0 . The
poles satisfying Eq. (5.59) in the left-half plane for n = 3 are the solutions of (s//?)3 +
2(s/R)2 + 2(s/R) + 1=0. For a given n, we can calculate the poles satisfying Eq. (5.59)
by using the MATLAB function roots, and discard the poles having positive real parts.
The Butterworth pattern for n = 2, 3, and 4 is shown in Figure 5.7. Note, however, that
as n increases, the real part of the two Butterworth poles closest to the imaginary axis
decreases. Thus for large n, it may be required to move these two poles further inside
the left-half plane, in order to meet a given speed of response.

Example 5.11

Let us compare the closed-loop initial response and the input for the inverted
pendulum on a moving cart with those obtained in Example 5.10 when the closed-
loop poles are in a Butterworth pattern. For n = 4, the poles satisfying Eq. (5.59)
in the left-half plane are calculated as follows:
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»z = roots( [1 0 0 0 0 0 0 0 1 ] ) <enter>

-0.9239+0.38271
-0.9239-0.38271
-0.3827+0.92391
-0.3827-0.92391
0.3827+0.92391
0.3827-0.92391
0.9239+0.38271
0.9239-0.38271

The first four elements of z are the required poles in the left-half plane, i.e. s/R =
-0.9239 ± 0.3827/ and s/R = -0.3827 ± 0.9239*. For obtaining a maximum over-
shoot less than 5% and settling-time less than 1 s for the initial response (the design
requirements of Example 5.10), let us choose R = 15. Then the closed-loop char-
acteristic polynomial are obtained as follows:

»i = find(real(z) < 0); p = poly(15*z(i) ) <enter>

Columns 1 through 3
1.00006+000 3.91976+001-3.5527e-015i 7.68206+002-5.68436-0141

Columns 4 through 5
8.81936+003-3.18326 -0121 5.06256+004-2.16546 -0111

Neglecting the small imaginary parts of p, the closed-loop characteristic polyno-
mial is s4 + 39.197s3 + 768.2s2 + 8819.3s + 50625, with the vector a given by

»alpha=real(p(2:5)) <enter>

alpha =
3.91976+001 7.68206+002 8.81936+003 5.06256+004

a =[39.197: 768.2; 8819.3; 50625] (5.60)

Then using the values of a, P, and P' calculated in Example 5.9, the regulator gain
matrix is calculated by Eq. (5.52) as follows:

»K = (alpha-a)*Pdash*inv(P) <enter>

K =
-5.94486+003 -5.16580+003 -9.3913e+002 -8.99930+002

and the closed-loop state-dynamics matrix is obtained as
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»ACL=A-B*K <enter>

ACL =

0 0 1.OOOOe+000 0
0 0 0 LOOOOe+000
-5.9340e+003 -5.16586+003 -9.39136+002 -8.99936+002
5.94386+003 5.16586+003 9.39136+002 8.99936+002

The closed-loop eigenvalues are calculated as follows:

»eig(ACL) <enter>

ans =
-5.74036+000+1.38586+0011
-5.74036+000-1.38586+001i
-1.38586+001+5.74036+OOOi
-1.38586+001 -5.74036+OOOi

which are the required closed-loop Butterworth poles for R = 15. The initial
response of the closed-loop system is calculated as follows, and is plotted in
Figure 5.8:

»t =0:1.07536-2:1.2; sysCL=ss(ACL,zeros(4,1),C,D); [y,t,X]=initial
(sysCL,[0 0.01 0 0]',t); <enter>

0.08

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

l I 1 I I

s Cart's displacement x(t), in meters

Pendulum's angular position,
9(t), in radians

0.2 0.4 0.6 0.8
Time (s)

1.2

Figure 5.8 Initial response of the regulated inverted pendulum on a moving cart, (or the
closed-loop poles in a Butterworth pattern of radius, R = 15
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Figure 5.9 Control input for the regulated inverted pendulum on a moving cart, for closed-loop
poles in a Butterworth pattern of radius, R = 15

Note from Figure 5.8 that the maximum overshoot for cart displacement is about
6% for both the outputs, and the settling time is greater than 1 s. The design is
thus unacceptable. The slow closed-loop response is caused by the pair of dominant
poles with real part —5.7403. If we try to increase the real part magnitude of the
dominant poles by increasing R, we will have to pay for the increased speed of
response in terms of increased input magnitude, because the poles furthest from
the imaginary axis (s/R = —0.9239 ± 0.38270 will move still further away. The
control input, w(0, is calculated and plotted in Figure 5.9 as follows:

»u = -K*X'; plot(t.u) <enter>

Figure 5.9 shows that the control input magnitude is much larger than that
of the design in Example 5.10. The present pole configuration is unacceptable,
because it does not meet the design specifications, and requires a large control
effort. To reduce the control effort, we will try a Butterworth pattern with R = 8.5.
To increase the speed of the response, we will move the dominant poles further
inside the left-half plane than dictated by the Butterworth pattern, such that all
the closed-loop poles have the same real parts. The selected closed-loop pole
configuration is s - -7.853 ± 3.2528i, and 5 = -7.853 ± 7.853i. The regulator
gain matrix which achieves this pole placement is obtained using MATLAB as
follows:

»format long e <enter>

»v=[-7.853-3.25281 -7.853+3.25281 -7.853-7.8531 -7.853+7.8531]'; K=place
( A , B , v ) <enter>

place: ndigits= 18
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K =
Columns 1 through 3
-1.3623640503602326+003 -9.0931607952022266+002 -3.4487416675480966+002

Column 4
-3.1346216675480896+002

Note that we have printed out K using the long format, because we will need this
matrix later. A short format would have introduced unacceptable truncation errors.
The closed-loop initial response is calculated and plotted in Figure 5.10 as follows:

»sysCL=ss(A-B*K,zeros(4,1),C,D); [ y , t ,X ] = initial(sysCL,
[0 0.01 0 0]', t); <enter>

0.03
0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

Cart's displacement x(f),
in meters

Pendulum's angular position,
0(0, in radians

0.2 0.4 0.6 0.8
Time (s)

1.2

Figure 5.10 Initial response of the regulated inverted pendulum on a moving cart for the design
of Example 5.11 with the closed-loop poles at s = -7.853 ± 3.25281, and s = -7.853 ± 7.853i

Design of Example 5.10.
_ Design of Example 5.11, with the

closed-loop poles at s = -7.853 ±
3.25281, and s = -7.853 ± 7.8S3/.

-10
0.2 0.4 0.6 0.8

Time (s)
1.2

Figure 5.11 Comparison of the control input for the design of Example 5.10 with that of
Example 5.11 with closed-loop poles at s = -7.853 ± 3.25281, and s = -7.853 ± 7.S53/
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Figure 5.10 shows that the closed-loop response has a maximum overshoot
of about 2.5% and a settling time of 1 s, which is a better performance
than the design of Example 5.10. The control input of the present design is
compared with that of Example 5.10 in Figure 5.11, which shows that the former
is less than half of the latter. Hence, the present design results in a better
performance, while requiring a much smaller control effort, when compared to
Example 5.10.

5.3.2 Pole-placement regulator design for multi-input plants

For a plant having more than one input, the full-state feedback regulator gain matrix of
Eq. (5.28) has (r x n) elements, where n is the order of the plant and r is the number
of inputs. Since the number of poles that need to be placed is n, we have more design
parameters than the number of poles. This over-abundance of design parameters allows
us to specify additional design conditions, apart from the location of n poles. What can
be these additional conditions? The answer depends upon the nature of the plant. For
example, it is possible that a particular state variable is not necessary for generating
the control input vector by Eq. (5.28); hence, the column corresponding to that state
variable in K can be chosen as zero, and the pole-placement may yet be possible. Other
conditions on K could be due to physical relationships between the inputs and the state
variables; certain input variables could be more closely related to some state variables,
requiring that the elements of K corresponding to the other state variables should be
zeros. Since the structure of the regulator gain matrix for multi-input systems is system
specific, we cannot derive a general expression for the regulator gain matrix, such as
Eq. (5.52) for the single-input case. The following example illustrates the multi-input
design process.

Example 5.12

Let us design a full-state feedback regulator for the following plant:

A =

C =

'0 0
0 0.01
0 0

1 0
0 0

D =

0 -1
0 -2

0 0 (5.61)

The plant is unstable due to a pole at s = 0.01. The rank of the controllability test
matrix of the plant is obtained as follows:

»rank(ctrb(A, B)) <enter>

ans =

3
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Hence, the plant is controllable, and the closed-loop poles can be placed at will.
The general regulator gain matrix is as follows:

K4

^3 I

K6 J
(5.62)

and the closed-loop state dynamics matrix is the following:

-K -K2

K4 (0.01 + *5)
2K4 2K5

ACL = A - BK =

which results in the following closed-loop characteristic equation:

(5.63)

|5l-AcLl = -K4 (s - 0.01 - K5)
-2K4 -2K5 (5+0.1 -2K6)

= 0 (5.64)

or

(s + Ki)[(s - 0.01 - K5)(s + 0.1 - 2K6) - 2K5K6] + K4[K2(s + 0.1 - 2K6)

+ 2K3K5] + 2K4[K2K6 + K3(s - 0.01 - *5)] = 0 (5.65)

or

+ (0.09 -Ks- 2K6 + K})s
2

-Kx K5 - 0.001 + 0.02/£6 - 0. 1 K5)s + 0. 1 K2K4 + 0.02/T, K6

-QAKiKs- 0.02/^3^4 = 0 (5.66)

Let us choose the closed-loop poles as s = — 1, and s = — 0.045 ±0.5i. Then
the closed-loop characteristic equation must be (s + \)(s +0.045 — Q.5i)(s +
0.045 + 0.5/) = s3 + 1.09s2 + 0.342s + 0.252 = 0, and comparing with Eq. (5.66),
it follows that

0. \K2 0.02K, K6- 0.001 K} - 0.1 K \ K5 -Q.

\K5 = 0.343

= 0.252 (5.67)

which is a set of nonlinear algebraic equations to be solved for the regulator design
parameters - apparently a hopeless task by hand. However, MATLAB (CST) again
comes to our rescue by providing the function place, which allows placing the poles
of multi-input plants. The function place employs an eigenstructure assignment
algorithm [3], which specifies additional conditions to be satisfied by the regulator
gain elements, provided the multiplicity of each pole to be placed does not exceed
the number of inputs, and all complex closed-loop poles must appear in conjugate
pairs. For the present example, the regulator gain matrix is determined using place
as follows:
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»A=[0 0 0;0 0.01 0;0 0 -0 .1 ] ;B= [1 0;0 -1;0 - 2 ] ; p= [ -1 -0.045-0.51
-0.045+0.51]; K=place(A,B,p) <enter>

place: ndigits= 16

K =

0.9232 0.1570 -0.3052
0.1780 -2.4595 1.1914

»eig(A-B*K) <enter>

ans =

-1.0000
-0.0450+0.50001
-0.0450-0.50001

You may verify that the computed values of the gain matrix satisfies
Eq. (5.67).The optimal control methods of Chapter 6 offer an alternative design
approach for regulators based on multi-input plants.

5.3.3 Poke-placement regulator design for plants with noise

In the previous two sections, we had ignored the presence of disturbances, or noise,
in a plant when designing full-state feedback regulators. Designs that ignore noise in
a plant are likely to fail when implemented in actual conditions where noise exists.
Noise can be divided into two categories: measurement noise, or the noise caused by
imperfections in the sensors that measure the output variables; and the process noise, or
the noise which arises due to ignored dynamics when modeling a plant. Since neither
the sensors nor a plant's mathematical model can be perfect, we should always expect
some noise in a plant. The state-equation of a plant with noise vector, x n ( t ) , is the
following:

x(1)(0 = Ax(0 + Bu(0 + FxM(0 (5.68)

where F is the noise coefficient matrix. To place the closed-loop poles at desired locations
while counteracting the effect of the noise, a full-state feedback regulator is to be designed
based on the following control-law:

u(0 = -Kx(0 - Kwxw(0 (5.69)

Substituting Eq. (5.69) into Eq. (5.68) yields the following state-equation of the closed-
loop system:

x(1)(0 = (A - BK)x(0 + (F - BKw)xw(0 (5.70)

Note that Eq. (5.70) implies that the noise vector, xM(0, acts as an input vector for
the closed-loop system, whose state-dynamics matrix is ACL = (A — BK). A schematic
diagram of the full-state feedback regulator with noise is shown in Figure 5.12.
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Figure 5.12 Schematic diagram of a full-state feedback regulator with noise, xn(f)

The regulator feedback gain matrix, K, is selected, as before, to place the closed-
loop poles (eigenvalues of ACL) at desired locations. While we may not know the exact
process by which the noise, \n(t), is generated (because it is usually a stochastic process,
as discussed in Chapter 1), we can develop an approximation of how the noise affects the
plant by deriving the noise coefficient matrix, F, from experimental observations. Once
F is known reasonably, the regulator noise gain matrix, Kw, can be selected such that the
effect of the noise vector, xn(f), on the closed-loop system is minimized. It would, of
course, be ideal if we can make (F — BKW) = 0, in which case there would be absolutely
no influence of the noise on the closed-loop system. However, it may not be always
possible to select the (rq) unknown elements of Kn to satisfy the (nq) scalar equations
constituting (F — BKn) = 0, where n is the order of the plant, r is the number of inputs,
and q is the number of noise variables in the noise vector, \n(t). When r < n (as it is
usually the case), the number of unknowns in (F — BKn) = 0 is less than the number of
scalar equations, and hence all the equations cannot be satisfied. If r = n, and the matrix
B is non-singular, then we can uniquely determine the regulator noise gain matrix by
Kn = — B~1F. In the rare event of r > n, the number of unknowns exceed the number
of equations, and all the equations, (F - BKn) = 0, can be satisfied by appropriately
selecting the unknowns, though not uniquely.

Example 5.13

Consider a fighter aircraft whose state-space description given by Eqs. (5.26) and
(5.27) has the following coefficient matrices:

A =
-1.7
0.22
0

50 260"
-1.4 -32
0 -12

-272'
0

14

0.02
-0.0035

0

0.1
0.004
0

C = I; D = 0; E = 0 (5.71)

The state variables of the aircraft model are normal acceleration in m/s2, JCi(f) ,
pitch-rate in rad/s, *2(/), and elevator deflection in rad, x^(t), while the input, u(t),
is the desired elevator deflection in rad. (For a graphical description of the system's
variables, see Figure 4.5.) The poles of the plant are calculated as follows:
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»A=[-1.7 50 260; 0.22 -1.4 -32; 0 0 -12]; damp(A) <enter>
Eigenvalue Damping Freq. (rad/sec)
1.7700 -1.0000 1.7700
-4.8700 1.0000 4.8700
-12.0000 1.0000 12.0000

The plant is unstable due to a pole at s = 1.11. To stabilize the closed-loop system,
it is desired to place the closed-loop poles at s = — 1 ± / and 5 = — 1. The following
controllability test reveals a controllable plant, implying that pole-placement is
possible:

»B=[-272 0 14]'; rank(ctrb(A,B)) <enter>

ans =

3

The regulator feedback gain matrix is thus obtained as follows:

»v = [ - i - i - i+ i - 1 ] ; K = p l a c e ( A , B , v ) <enter>

place: ndigits= 19

K =

0.0006 -0.0244 -0.8519

and the closed-loop state dynamics matrix is the following:

»ACL=A-B*K <enter>
ACL =

-1.5267
0.2200
-0.0089

43.3608
-1.4000
0.3417

28.2818
-32.0000
-0.0733

To determine the remaining regulator matrix, KM = [Kn\ Kn2\, let us look at
the matrix (F —

F — BKn =
'0.02 + 272^1 0.1+272/^2

-0.0035 0.004
-\AKn]

(5.72)

Equation (5.72) tells us that it is impossible to make all the elements of (F — BKn)
zeros, by selecting the two unknown design parameters, Kn\ and Kn2. The next best
thing to (F — BKn) = 0 is making the largest elements of (F — BKn) zeros, and
living with the other non-zero elements. This is done by selecting Kn\ = —0.02/272
and Kni = -0.1/272 which yields the following (F - BKn):

F - BK« =
0

-0.0035
0.00103

0
0.004
0.00515

(5.73)

 EBSCOhost - printed on 10/27/2025 6:06 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



250 CONTROL SYSTEM DESIGN IN STATE-SPACE

With (F — BK,,) given by Eq. (5.73), we are always going to have some effect of
noise on the closed-loop system, which hopefully, will be small. The most satis-
fying thing about Eq. (5.73) is that the closed-loop system given by Eq. (5.70) is
uncontrollable with noise as the input (you can verify this fact by checking the
rank of ctrb (Act, (F — BK,,)). This means that the noise is not going to affect
all the state variables of the closed-loop system. Let us see by what extent the
noise affects our closed-loop design by calculating the system's response with a
noise vector, \n(t) — [1 x 10~5; —2 x 10~6]r sin(lOOr), which acts as an input to
the closed-loop system given by Eq. (5.70), with zero initial conditions. Such a
noise model is too simple; actual noise is non-deterministic (or stochastic), and
consists of a combination of several frequencies, rather than only one frequency
(100 rad/s) as assumed here. The closed-loop response to noise is calculated by
using the MATLAB (CST) command Isim as follows:

»t=0:0.01:5; xn=[1e-5 -2e-6]'*sin(100*t) ; Bn=[0 0;-3.5e-3 0.004;1 .03e-3 5.15e-3];
<enter>

»sysCL=ss(ACL,Bn,eye(3),zeros(3,2)) ; [y,t,X]=lsim(sysCL,xn',t') ; plot(t.X) <enter>

The resulting closed-loop state variables, x\(t), *2(0, and x ^ ( t ) , are plotted
in Figure 5.13, which shows oscillations with very small amplitudes. Since the
amplitudes are very small, the effect of the noise on the closed-loop system can
be said to be negligible. Let us see what may happen if we make the closed-
loop system excessively stable. If the closed-loop poles are placed at s = —100,
s = — 100±100/, the resulting closed-loop response to the noise is shown in
Figure 5.14. Note that the closed-loop response has increased by about 300 times in

Figure 5.13 Closed-loop response of the regulated fighter aircraft to noise, when the
closed-loop poles are s = — 1, s = — 1 ± /
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Figure 5.14 Closed-loop response of the regulated fighter aircraft to noise, when the
closed-loop poles are s = -100, s = -100 ± 100 /

magnitude, compared with that of Figure 5.13. Therefore, moving the poles too far
into the left-half plane has the effect of increasing the response of the system due to
noise, which is undesirable. This kind of amplified noise effect is due to the resulting
high gain feedback. High gain feedback is to be avoided in the frequency range of
expected noise. This issue is appropriately dealt with by filters and compensators
(Chapter 7).

The conflicting requirements of increasing the speed of response, and decreasing the
effect of noise are met by a pole configuration that is neither too deep inside the left-half
plane, nor too close to the imaginary axis. The optimum pole locations are obtained by
trial and error, if we follow the pole-placement approach. However, the optimal control
methods of Chapters 6 and 7 provide a more effective procedure of meeting both speed
and noise attenuation requirements than the pole-placement approach.

5.3.4 Pole-placement design of tracking systems

Now we are in a position to extend the pole-placement design to tracking systems, which
are systems in which the desired state-vector, xd(r), is non-zero. Schematic diagram
of a tracking system with noise was shown in Figure 5.2, with the plant described by
Eqs. (5.26) and (5.27), and the control-law given by Eq. (5.25). The objective of the
tracking system is to make the error, e(f) = (xd(0 - x(0), zero in the steady-state, while
counteracting the effect of the noise, xw(r). If the process by which the desired state-
vector is generated is linear and time-invariant, it can be represented by the following

 EBSCOhost - printed on 10/27/2025 6:06 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



252 CONTROL SYSTEM DESIGN IN STATE-SPACE

state-equation:

/ 1 \

(5.74)

Note that Eq. (5.74) represents a homogeneous system, because the desired state vector
is unaffected by the input vector, u(/). Subtracting Eq. (5.26) from Eq. (5.74), we can
write the following plant state-equation in terms of the error:

xd
n(0 - x(1)(0 = AdXd(0 - Ax(0 - Bu(0 - Fxn(0 (5.75)

or

e(1)(0 = Ae(0 + (Ad - A)Xd(r) - Bu(?) - ¥xn(t) (5.76)

and the control-law (Eq. (5.25)) can be re- written as follows:

u(0 = Ke(0 - KdXdCO - K,,xw(0 (5.77)

Referring to Figure 5.2, we see that while K is a feedback gain matrix (because it
multiplies the error signal which is generated by the fed back state-vector), Kd and
Kn are feedforward gain matrices, which multiply the desired state- vector and the noise
vector, respectively, and hence feed these two vectors forward into the control system.
Substituting Eq. (5.77) into Eq. (5.76) yields the following state-equation for the tracking
system:

e(1)(0 = (A - BK)e(r) + (Ad - A + BKd)Xd(0 + (BKn - F)xn(0 (5.78)

The design procedure for the tracking system consists of determining the full-state
feedback gain matrix, K, such that the poles of the closed-loop system (i.e. eigenvalues
of ACL = A — BK) are placed at desired locations, and choose the gain matrices, Kd and
Kn, such that the error, e(0, is either reduced to zero, or made as small as possible in
the steady-state, in the presence of the noise, xn(0- Of course, the closed-loop system
described by Eq. (5.78) must be asymptotically stable, i.e. all the closed-loop poles must
be in the left-half plane, otherwise the error will not reach a steady-state even in the
absence of noise. Furthermore, as seen in Example 5.13, there may not be enough design
parameters (i.e. elements in Kj and Kn) to make the error zero in the steady-state, in
the presence of noise. If all the closed-loop poles are placed in the left-half plane, the
tracking system is asymptotically stable, and the steady-state condition for the error is
reached (i.e. the error becomes constant in the limit t -> oo). Then the steady state
condition is described by e(1)(0 = 0, and Eq. (5.78) becomes the following in the steady
state:

0 = (A - BK)ess + (Ad - A + BK^x^ + (BKn - F)x,ISS (5.79)

where e(0 ->• ess (the steady state error vector), Xd(0 -> Xdss, and xw(0 -> xnss as t -»• oo.
From Eq. (5.79), we can write the steady state error vector as follows:

ess = (A - BK)-'[(A - BIQ - Ad)XdSS + (F - BKn)xnss] (5.80)
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Note that the closed-loop state-dynamics matrix, ACL = A — BK, is non-singular, because
all its eigenvalues are in the left-half plane. Hence, (A — BK)"1 exists. For ess to be zero,
irrespective of the values of Xdss and x,,ss, we should have (A — BKd — Ad) = 0 and
(F — BKW) = 0, by selecting the appropriate gain matrices, Kd and K,,. However, as seen
in Example 5.13, this is seldom possible, owing to the number of inputs to the plant,
r, being usually smaller than the order of the plant, n. Hence, as in Example 5.13, the
best one can usually do is to make some elements of ess zeros, and living with the other
non-zero elements, provided they are small. In the rare case of the plant having as many
inputs as the plant's order, i.e. n = r, we can uniquely determine Kd and K,, as follows,
to make ess — 0:

K d = B - ' ( A - A d ) ; K r t = B ' F (5.81)

Example 5.14

For the fighter aircraft of Example 5.13, let us design a controller which makes the
aircraft track a target, whose state-dynamics matrix, Ad, is the following:

-2.1 35 150
0.1 -1.1 -21
0 0 -8

(5.82)

The eigenvalues of Ad determine the poles of the target, which indicate how rapidly
the desired state-vector, Xd(0> is changing, and are calculated as follows:

»Ad = [ -10 .1 35 150; 0.1 -1 .1 -21; 0 0 - 8 ] ; damp(Ad) <enter>

Eigenvalue Damping Freq. ( rad/sec)
-0.7266 1.0000 0.7266
-8.0000 1.0000 8.0000
-10.4734 1.0000 10.4734

The target dynamics is asymptotically stable, with the pole closest to the imaginary
axis being, s = —0.7266. This pole determines the settling time (or the speed)
of the target's response. To track the target successfully, the closed-loop tracking
system must be fast enough, i.e. the poles closest to the imaginary axis must have
sufficiently small real parts, i.e. smaller than —0.7266. However, if the closed-
loop dynamics is made too fast by increasing the negative real part magnitudes of
the poles, there will be an increased effect of the noise on the system, as seen in
Example 5.13. Also, recall that for an efficient design (i.e. smaller control effort), all
the closed-loop poles must be about the same distance from the imaginary axis. Let
us choose a closed-loop pole configuration as s = — 1, s = — 1 ± /. The feedback
gain matrix for this pole configuration was determined in Example 5.13 to be the
following:

K = [0.0006; -0.0244; -0.8519] (5.83)
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with the closed-loop state-dynamics matrix given by

ACL = A - BK =
-1.5267 43.3608 28.2818

0.2200 -1.4000 -32.0000
-0.0089 0.3417 -0.0733

(5.84)
The noise gain matrix, Kw, was determined in Example 5.13 by making the largest
elements of (F — BK,,) vanish, to be the following:

K,, = [ -0.02/272; -0.1 /272 ] (5.85)

It remains to find the feedforward gain matrix, K^ = [Kd\', K.&I', Kd3 L by
considering the steady state error, ess, given by Eq. (5.81). Note from Eq. (5.80)
that, since the target is asymptotically stable, it follows that x<iss = 0, hence Kj will
not affect the steady state error. However, the transient error, e(/), can be reduced
by considering elements of the following matrix:

A - Ad -
272^,)

0.12 -0.3
-\4Kd2

110 + 272/^3)
11
4 - \4Kd3

(5.86)

Since by changing Kd we can only affect the first and the third rows of (A — A^—
BKd), let us select Kj such that the largest elements of (A — A<j — BKj), which are
in the first row, are minimized. By selecting Kd\ = —8.4/272, Kdi = —15/272, and
Kd3 = —110/272, we can make the elements in the first row of (A — Aj — BKj)
zeros, and the resulting matrix is the following:

A - Ad -
0
0.12
0.432

0
-0.3

0.772

0
-11

1.704

and the required feedforward gain matrix is given by

Kd = [ -8.4/272; -15/272; -110/272]

(5.87)

(5.88)

The closed-loop error response to target initial condition, Xd(0) = [3; 0; 0]r, and
noise given by \n(t) = [ I x 10~5; -2 x 10~6]r sin(lOOf), can be obtained by
solving Eq. (5.78) with Xd(f) and xn(f) as the known inputs. The noise vector,
x,,(f), and the matrix (BKn — F), are calculated for time upto 10 s as follows:

»t = 0:0.01:10; Xn = [1e-5 -2e-6]'*sin(100*t) ; Bn = - [0 0; -3.5e-3
0.004;1 ,03e-3 5.15e-3]; <enter>

The desired state- vector, x^(t), is obtained by solving Eq. (5.74) using the MATLAB
(CST) command initial as follows:

»sysd=ss(Ad,zeros(3,1),eye(3),zeros(3,1)); [yd.t.Xd,] = initial(sysd,
[3 0 0] ' , t ) ; <enter>
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Figure 5.15 Closed-loop error and control input response of the fighter aircraft tracking a
target with initial condition X,j(0) = [3; 0; 0]r

The closed-loop error dynamics given by Eq. (5.78) can be written as follows:

e ( l )(0 - ACLe(0 + BCLf(0 (5.89)

where ACL = A - BK, BCL = [(Ad-A 4- BKd); (BK,T-F)], and the input
vector, f(f) = [Xd(07; x,,(r)7 ]r, which are calculated as follows:

»ACL = A-B*K; BCL = [Ad-A+B*Kd Bn]; f = [Xd Xn ' ] ; <enter>

Finally, using the MATLAB command Isim, the closed-loop error response, e(t), is
calculated as follows:

»sysCL=ss(ACL,BCL,eye(3) ,zeros(3,5) ) ; e = lsim(sysCL,f ,t') ; <enter>

The error, e(f) = [e i ( f ) ; ^z(0; e i ( t ) ] T , and control input, u(t) = Ke(f) -
KdXdCO — Kwxn(0, are plotted in Figure 5.15. Note that all the error transients
decay to zero in about 10 s, with a negligible influence of the noise. The settling
time of error could be made smaller than 1.0 s, but with a larger control effort and
increased vulnerability to noise.

The controller design with gain matrices given by Eqs. (5.83), (5.85), and (5.88) is
the best we can do with pole-placement, because there are not enough design parameters
(controller gain elements) to make the steady state error identically zero. Clearly, this is
a major drawback of the pole-placement method. A better design approach with full-state
feedback is the optimal control method, which will be discussed in Chapters 6 and 7.
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