
Linear Optimal Control

6.1 The Optimal Control Problem

After designing control systems by pole-placement in Chapter 5, we naturally ask why
we should need to go any further. Recall that in Chapter 5 we were faced with an over-
abundance of design parameters for multi-input, multi-output systems. For such systems,
we did not quite know how to determine all the design parameters, because only a limited
number of them could be found from the closed-loop pole locations. The MATLAB M-file
place.m imposes additional conditions (apart from closed-loop pole locations) to deter-
mine the design parameters for multi-input regulators, or multi-output observers; thus the
design obtained by place.m cannot be regarded as pole-placement alone. Optimal control
provides an alternative design strategy by which all the control design parameters can
be determined even for multi-input, multi-output systems. Also in Chapter 5, we did not
know a priori which pole locations would produce the desired performance; hence, some
trial and error with pole locations was required before a satisfactory performance could
be achieved. Optimal control allows us to directly formulate the performance objectives
of a control system (provided we know how to do so). More importantly - apart from the
above advantages - optimal control produces the best possible control system for a given
set of performance objectives. What do we mean by the adjective optimal! The answer lies
in the fact that there are many ways of doing a particular thing, but only one way which
requires the least effort, which implies the least expenditure of energy (or money). For
example, we can hire the most expensive lawyer in town to deal with our inconsiderate
neighbor, or we can directly talk to the neighbor to achieve the desired result. Simi-
larly, a control system can be designed to meet the desired performance objectives with
the smallest control energy, i.e. the energy associated with generating the control inputs.
Such a control system which minimizes the cost associated with generating control inputs
is called an optimal control system. In contrast to the pole-placement approach, where
the desired performance is indirectly achieved through the location of closed-loop poles,
the optimal control system directly addresses the desired performance objectives, while
minimizing the control energy. This is done by formulating an objective function which
must be minimized in the design process. However, one must know how the performance
objectives can be precisely translated into the objective function, which usually requires
some experience with a given system.

If we define a system's transient energy as the total energy of the system when it is
undergoing the transient response, then a successful control system must have a transient
energy which quickly decays to zero. The maximum value of the transient energy indicates
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284 LINEAR OPTIMAL CONTROL

the maximum overshoot, while the time taken by the transient energy to decay to zero
indicates the settling time. By including the transient energy in the objective Junction, we
can specify the values of the acceptable maximum overshoot and settling time. Similarly,
the control energy must also be a part of the objective function that is to be minimized. It
is clear that the total control energy and total transient energy can be found by integrating
the control energy and transient energy, respectively, with respect to time. Therefore, the
objective function for the optimal control problem must be a time integral of the sum of
transient energy and control energy expressed as functions of time.

6.1.1 The general optimal control formulation for regulators

Consider a linear plant described by the following state-equation:

(6.1)

Note that we have deliberately chosen a time-varying plant in Eq. (6.1), because the
optimal control problem is generally formulated for time-varying systems. For simplicity,
suppose we would like to design a full-state feedback regulator for the plant described
by Eq. (6. 1 ) such that the control input vector is given by

u(r) = -K(r)x(0 (6.2)

The control law given by Eq. (6.2) is linear. Since the plant is also linear, the closed-loop
control system would be linear. The control energy can be expressed as uT(f)R(Ou(f),
where R(0 is a square, symmetric matrix called the control cost matrix. Such an
expression for control energy is called a quadratic form, because the scalar function,
uT(f)R(?)u(r), contains quadratic functions of the elements of u(r). Similarly, the transient
energy can also be expressed in a quadratic form as xT(f )Q(r)x(r), where Q(f) is a square,
symmetric matrix called the state weighting matrix. The objective Junction can then be
written as follows:

J(t,tf)= / /[xT(T)Q(r)x(r)+uT(r)R(r)u(r)]t/r (6.3)

where t and tf are the initial and final times, respectively, for the control to be exercised,
i.e. the control begins at r = t and ends at r = tf, where r is the variable of integration.
The optimal control problem consists of solving for the feedback gain matrix, K(/), such
that the scalar objective function, J(t, tf), given by Eq. (6.3) is minimized. However, the
minimization must be carried out in such a manner that the state-vector, x(f), is the solution
of the plant's state-equation (Eq. (6.1)). Equation (6.1) is called a constraint (because in
its absence, x(r) would be free to assume any value), and the resulting minimization is
said to be a constrained minimization. Hence, we are looking for a regulator gain matrix,
K(f), which minimizes J ( t , t f ) subject to the constraint given by Eq. (6.1). Note that
the transient term, xT(r)Q(r)x(r), in the objective function implies that a departure of
the system's state, x(r), from the final desired state, x(/y) = 0, is to be minimized. In
other words, the design objective is to bring x(r) to a constant value of zero at final
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_ THE OPTIMAL CONTROL PROBLEM _ 285

time, T = tf. If the final desired state is non-zero, the objective function can be modified
appropriately, as we will see later.

By substituting Eq. (6.2) into Eq. (6.1), the closed-loop state-equation can be written
as follows:

f ) - AcL(r)x(f) (6.4)

where ACL(^) — [A(0 — B(t)K(t )], the closed-loop state-dynamics matrix. The solution
to Eq. (6.4) can be written as follows:

x(0 = 4>cL(' , ro)x(fo) (6.5)

where 4>ci,(f » ?o) is the state-transition matrix of the time- varying closed-loop system
represented by Eq. (6.4). Since the system is time-varying, 3>cL(t, to), is not the matrix
exponential of ACL(^ ~~ to), but is related in some other way (which we do not know) to
ACL(O- Equation (6.5) indicates that the state at any time, x(t), can be obtained by post-
multiplying the state at some initial time, x(t0), with <I>CL(^ to)- On substituting Eq. (6.5)
into Eq. (6.3), we get the following expression for the objective function:

J ( t , tf) = x ( O O L ( r , /)[Q(r) + K(r)R(T)K(r)]cf>C L(T, t)x(t) dr (6.6)

or, taking the initial state-vector, x(t), outside the integral sign, we can write

J(t,tf) = \T(t)M(t,tf)x(t) (6.7)

where

M(f, tf) = < I > L ( r , r)[Q(r) + K(T)R(r)K(r)]<DCL(r , t)di (6.8)

Equation (6.7) shows that the objective function is a quadratic function of the initial state,
x(t). Hence, the linear optimal regulator problem posed by Eqs. (6.1)-(6.3) is also called
the linear, quadratic regulator (LQR) problem. You can easily show from Eq. (6.8) that
M(t, tf) is a symmetric matrix, i.e. MT(r, tf) = M(t, tf), because both Q(0 and R(t) are
symmetric. On substituting Eq. (6.5) into Eq. (6.6), we can write the objective function
as follows:

/

tf
xT(r)[Q(r) + KT(T)R(r)K(r)]x(r) dr (6.9)

On differentiating Eq. (6.9) partially with respect to the lower limit of integration, t,
according to the Leibniz rule (see a textbook on integral calculus, such as that by
Kreyszig [1]), we get the following:

d J ( t , tf)/dt = -xT(0[Q(0 + KT(t)R(t)K(t)]x(t) (6.10)

where 9 denotes partial differentiation. Also, partial differentiation of Eq. (6.7) with
respect to t results in the following:

dJ(t,tf)/dt = [x(l)(t)]'M(t,tf)x(t) +x1(t)[dM(t,tf)/dt]x(t) +xl(t)M(t,tf)x
(l}(t)
(6.11)
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On substituting x(1)(0 = AciXOxCO from Eq. (6.4) into Eq. (6.11), we can write

dJ(t, tf)/dt = xT(0[AjL(r)M(f, //) + 3M(f, tf)/dt + M(r, r/)ACL(01x(/) (6.12)

Equations (6.10) and (6.12) are quadratic forms for the same scalar function, 37(r, //)/3/
in terms of the initial state, \(t). Equating Eqs. (6.10) and (6.12), we get the following
matrix differential equation to be satisfied by M(f , //):

-[Q(0 + KT(r)R(r)K(r)] = AjL(r)M(r, //) + 3M(r, tf)/dt + M(r, r/)ACL(0 (6.13)

or

-3M(f, //)/3/ = AjL(OM(r, tf) + M(t, f/)ACL(0 + [Q(0 + KT(f)R(/)K(r)] (6.14)

Equation (6.14) is a first order, matrix partial differential equation in terms of the
initial time, /, whose solution M(t, tf) is given by Eq. (6.8). However, since we do
not know the state transition matrix, 4>cL(^ 0» of the general time-varying, closed-loop
system, Eq. (6.8) is useless to us for determining M (/, //). Hence, the only way to find
the unknown matrix M(r, tf) is by solving the matrix differential equation, Eq. (6.14).
We need only one initial condition to solve the first order matrix differential equation,
Eq. (6.14). The simplest initial condition can be obtained by putting t = tf in Eq. (6.8),
resulting in

M(r/,r/) = 0 (6.15)

The linear optimal control problem is thus posed as finding the optimal regulator
gain matrix, K(t), such that the solution, M(t, tf), to Eq. (6.14) (and hence the objective
function, J(t, tf)) is minimized, subject to the initial condition, Eq. (6.15). The choice of
the matrices Q(f) and R(t) is left to the designer. However, as we will see below, these
two matrices specifying performance objectives and control effort, cannot be arbitrary,
but must obey certain conditions.

6.1.2 Optimal regulator gain matrix and the Riccati equation

Let us denote the optimal feedback gain matrix that minimizes M(t,tf) by K<>(0.
minimum value of M(f, tf) which results from the optimal gain matrix, KO(')> is denoted
by Mo(r, tf), and the minimum value of the objective function is denoted by J0(t, tf). For
simplicity of notation, let us drop the functional arguments for the time being, and denote
M(r, tf) by M, /(/,//) by J , etc. Then, according to Eq. (6.7), the minimum value of
the objective function is the following:

J0 = XT(t)M0\(t) (6.16)

Since J0 is the minimum value of J for any initial state, x(/), we can write J0 < 7, or

xr(r)M0x(r) < \T(t)M\(t) (6.17)
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If we express M as follows:
M = M0 + m (6.18)

and substitute Eq. (6.18) into Eq. (6.17), the following condition must be satisfied:

\T (/)M0x(f ) < xr (r)MoX(O + \T (r)mx(r ) (6.19)

or
x r(»mx(r)>0 (6.20)

A matrix, m, which satisfies Eq. (6.20), is called a positive semi-definite matrix. Since
x(f) is an arbitrary initial state-vector, you can show that according to Eq. (6.20), all
eigenvalues of m must be greater than or equal to zero.

It now remains to derive an expression for the optimum regulator gain matrix, KO(?)»
such that M is minimized. If M0 is the minimum value of M, then M0 must satisfy
Eq. (6.14) when K(f) = K«,(0, i.e.

-dM0/dt = A L ( f ) M o + MoAciXO + [Q(0 + K(OR(OKo(0] (6.21)

Let us express the gain matrix, K(f), in terms of the optimal gain matrix, K0(0, as
follows:

K(0 = Ko(0 + k(r) (6.22)

On substituting Eqs. (6.18) and (6.21) into Eq. (6.14), we can write

-3(Mo + m)/dt = AjL(0(Mo + m) + (M0 + m)ACL(0

+ [Q(0 + {Ko(0 + k(r)}TR(0{Ko(0 + k(r)}] (6.23)

On subtracting Eq. (6.21) from Eq. (6.23), we get

-dm/dt = AjL(/)m + mACL(0 + S (6.24)

where

T T TS - [K(r )R(r ) - MoB(0]k(0 + k(0[R(r)K0(r) - B(OM0] + k( r )R(r )k( r )
(6.25)

Comparing Eq. (6.24) with Eq. (6.14), we find that the two equations are of the same
form, with the term [Q(f) + KT(/)R(f)K(0] in Eq. (6.14) replaced by S in Eq. (6.24).
Since the non-optimal matrix, M, in Eq. (6.14) satisfies Eq. (6.8), it must be true that m
satisfies the following equation:

m(t, tf) = f 4>JL(r, r)S(r, r/)4>cL(r, 0 dr (6.26)

Recall from Eq. (6.20) that m must be positive semi-definite. However, Eq. (6.26) requires
that for m to be positive semi-definite, the matrix S given by Eq. (6.25) must be positive
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