Al rights reserved. May-not be reproduced in any formwi thout permssion fromthe publisher, except fair uses permtted under U.S. or applicable copyright |aw.

Copyright 2002. John Wley and Sons, Inc.

288 LINEAR OPTIMAL CONTROL

semi-definite. Looking at Eq. (6.25), we find that S can be positive semi-definite if and
only if the linear terms in Eq. (6.25) are zeros, i.e. which implies

KI()R(t) — M,B(1) = 0 (6.27)
or the optimal feedback gain matrix is given by

Ko(r) = R7' (BT ()M, (6.28)

Substituting Eq. (6.28) into Eq. (6.21), we get the following differential equation to be
satisfied by the optimal matrix, My:

—dM,/dt = AT()M, + MoA(1) — MoB()R™ ()BT ()M, + Q(1) (6.29)

Equation (6.29) has a special name: the matrix Riccati equation. The matrix Riccati
equation is special because it’s solution, M,, substituted into Eq. (6.28), gives us the
optimal feedback gain matrix, K,(z). Exact solutions to the Riccati equation are rare,
and in most cases a numerical solution procedure is required. Note that Riccati equation
is a first order, nonlinear differential equation, and can be solved by numerical methods
similar to those discussed in Chapter 4 for solving the nonlinear state-equations, such as
the Runge—Kurta method, or other more convenient methods (such as the one we will
discuss in Section 6.5). However, in contrast to the state-equation, the solution is a matrix
rather than a vector, and the solution procedure has to march backwards in time, since
the initial condition for Riccati equation is specified (Eq. (6.15)) at the final time, t = t;,
as follows:

Mo(tf, tf) =0 (6.30)

For this reason, the condition given by Eq. (6.30) is called the terminal condition rather
than initial condition. Note that the solution to Eq. (6.29) is M,(t, ts) where t < t5. Let
us defer the solution to the matrix Riccati equation until Section 6.5.

In summary, the optimal control procedure using full-state feedback consists of
specifying an objective function by suitably selecting the performance and control cost
weighting matrices, Q(¢) and R(r), and solving the Riccati equation subject to the terminal
condition, in order to determine the full-state feedback matrix, K,(z). In most cases, rather
than solving the general time-varying optimal control problem, certain simplifications can
be made which result in an easier problem, as seen in the following sections.

6.2 Infinite-Time Linear Optimal Regulator Design

A large number of control problems are such that the control interval, (t; — ¢), is infinite.

If we are interested in a specific steady-state behavior of the control system, we are

interested in the response, x(¢), when f; — oo, and hence the control interval is infinite.

The approximation of an infinite control interval results in a simplification in the optimal

control problem, as we will see below. For infinite final time, the quadratic objective
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function can be expressed as follows:
oo
Joo(t) = f XT(OQ@)x(1) +uT(D)R(Du(r)dr (6.31)
4

where Jo(f) indicates the objective function of the infinite final time (or steady-state)
optimal control problem. For the infinite final time, the backward time integration of
the matrix Riccati equation (Eq. (6.29)), beginning from M,(co, oo) = 0, would result
in a solution, M, (¢, oo), which is either a constant, or does not converge to any limit.
If the numerical solution to the Riccati equation converges to a constant value. then
dM, /0t = 0, and the Riccati equation becomes

0=AT(HOM, + MoA(t) — M_B(OR™ ()BT ()M, + Q1) (6.32)

Note that Eq. (6.32) is no longer a differential equation, but an algebraic equation. Hence,
Eq. (6.32) is called the algebraic Riccati equation. The feedback gain matrix is given by
Eq. (6.28), in which M, is the (constant) solution to the algebraic Riccati equation. It is
(relatively) much easier to solve Eq. (6.32) rather that Eq. (6.29). However, a solution to
the algebraic Riccati equation may not always exist.

What are the conditions for the existence of the positive semi-definite solution to
the algebraic Riccati equation? This question is best answered in a textbook devoted to
optimal control, such as that by Bryson and Ho [2], and involves precise mathematical
conditions, such as stabilizability, detectability, etc., for the existence of solution. Here,
it suffices to say that for all practical purposes, if either the plant is asymptotically
stable, or the plant is controllable and observable with the output, y(¢) = C(¢)x(¢), where
CT(1)C(t) = Q(z), and R(¢) is a symmetric, positive definite matrix, then there is a unique,
positive definite solution, M, to the algebraic Riccati equation. Note that CT(r)C(r) =
Q(r) implies that Q(r) must be a symmetric and positive semi-definite matrix. Furthermore,
the requirement that the control cost matrix, R(z), must be symmetric and positive definite
(i.e. all eigenvalues of R(t) must be positive real numbers) for the solution, M, to be
positive definite is clear from Eq. (6.25), which implies that § (and hence m) will be
positive definite only if R(z) is positive definite. Note that these are sufficient (but not
necessary) conditions for the existence of a unique solution to the algebraic Riccati
equation, i.e. there may be plants that do nor satisfy these conditions, and yet there may
exist a unique, positive definite solution for such plants. A less restrictive set of sufficient
conditions for the existence of a unique, positive definite solution to the algebraic Riccati
equation is that the plant must be stabilizable and detectable with the output, y(r) =
C()x(2), where CT()C(t) = Q(1), and R(r) is a symmetric, positive definite matrix (see
Bryson and Ho [2] for details).

While Eq. (6.32) has been derived for linear optimal control of time-varying plants.
its usual application is to time-invariant plants, for which the algebraic Riccati equation
is written as follows:

0=A"™, + M,A — M,BR!B™, + Q (6.33)
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In Eq. (6.33), all the matrices are constant matrices. MATLAB contains a solver for
the algebraic Riccati equation for time-invariant plants in the M-file named are.m. The
command are is used as follows:

>>x = are(a,b,c) <enter>

where a = A, b = BR™!BT, ¢ = Q, in Eq. (6.33), and the returned solution is x = M,. For
the existence of a unique, positive definite solution to Eq. (6.33), the sufficient conditions
remains the same, i.e. the plant with coefficient matrices A, B must be controllable, Q
must be symmetric and positive semi-definite, and R must be symmetric and positive
definite. Another MATLAB function, ric, computes the error in solving the algebraic
Riccati equation. Alternatively, MATLAB’s Control System Toolbox (CST) provides the
functions Igr and Igr2 for the solution of the linear optimal control problem with a
quadratic objective function, using two different numerical schemes. The command /gr
(or Igr2) is used as follows:

>>[Ko,Mo,E]= 1qr(A,B,Q,R) <enter>

where A, B, Q, R are the same as in Eq. (6.33), Mo = M,, the returned solution of
Eq. (6.33), Ko = K,= R 'B™M, the returned optimal regulator gain matrix, and E is the
vector containing the closed-loop eigenvalues (i.e. the eigenvalues of Ac, = A — BK,).
The command Igr (or lgr2) is more convenient to use, since it directly works with the
plant’s coefficient matrices and the weighting matrices. Let us consider a few examples
of linear optimal control of time-invariant plants, based upon the solution of the algebraic
Riccati equation. (For time-varying plants, the optimal feedback gain matrix can be deter-
mined by solving the algebraic Riccati equation at each instant of time, ¢, using either igr
or Igr2 in a time-marching procedure.)

Example 6.1

Consider the longitudinal motion of a flexible bomber aircraft of Example 4.7. The
sixth order, two input system is described by the linear, time-invariant, state-space
representation given by Eq. (4.71). The inputs are the desired elevator deflection
(rad.), u; (t), and the desired canard deflection (rad.), u,(t), while the outputs are the
normal acceleration (m/s?), y|(t), and the pitch-rate (rad./s), y»(t). Let us design an
optimal regulator which would produce a maximum overshoot of less than +2 m/s?
in the normal-acceleration and less than +0.03 rad/s in pitch-rate, and a settling
time less than 5 s, while requiring elevator and canard deflections not exceeding
+0.1 rad. (5.73°), if the initial condition is 0.1 rad/s perturbation in the pitch-rate,
i.e. x(0) = [0;0.1; 0: 0; 0; 0]

What Q and R matrices should we choose for this problem? Note that Q is a
square matrix of size (6 x 6) and R is a square matrix of size (2 x 2). Examining the
plant model given by Eq. (4.71), we find that while the normal acceleration, y,(¢),
depends upon all the six state variables, the pitch-rate, y2(t), is equal to the second
state-variable. Since we have to enforce the maximum overshoot limits on y|(¢) and
v2(t), we must, therefore, impose certain limits on the maximum overshoots of all
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the state variables, which is done by selecting an appropriate state weighting matrix,
Q. Similarly, the maximum overshoot limits on the two input variables, u;(r) and
uy(t), must be specified through the control cost matrix, R. The settling time would
be determined by both Q and R. A priori, we do not quite know what values of Q
and R will produce the desired objectives. Hence, some trial and error is required
in selecting the appropriate Q and R. Let us begin by selecting both Q and R as
identity matrices. By doing so, we are specifying that all the six state variables
and the two control inputs are equally important in the objective function, i.e. it is
equally important to bring all the state variables and the control inputs to zero, while
minimizing their overshoots. Note that the existence of a unique, positive definite
solution to the algebraic Riccati equation will be guaranteed if Q and R are positive
semi-definite and positive definite, respectively, and the plant is controllable. Let us
test whether the plant is controllable as follows:

>>rank(ctrb(A,B)) <enter>

ans=
6

Hence, the plant is controllable. By choosing Q = I, and R = I, we are ensuring that
both are positive definite. Therefore, all the sufficient conditions for the existence
of an optimal solution are satisfied. For solving the algebraic Riccati equation, let
us use the MATLAB command Igr as follows:

>>[Ko,Mo,E]=1qr{A,B,eye(6),eye(2)) <enter>

Ko=
3.3571e+000 -4.2509e-001 -6.2538e-001 -7.3441e-001 2.8190e+000 1.5765e+000
3.8181e+000 1.0274e+000 -5.4727e-001 -6.8075e-001 2.1020e+000 1.8500e+000

Mo=
1.7429e+000 2.8673e-001 1.1059e-002 -1.4159e-002 4.4761e-002 3.8181e-002
2.8673e-001 4.1486e-001 1.0094e-002 -2.1528e-003 -5.6679e-003 1.0274e-002
1.1059¢-002 1.0094e-002 1.0053e+000 4.4217¢-003 -8.3383e-003 -5.4727e¢-003
-1.4159e-002 -2.1528e-003 4.4217e-003 4.9047e-003 -9.7921e-003 -6.8075e-003
4.4761e-002 -5.6679e-003 -8.3383e-003 -9.7921e-003 3.7586e-002 2.1020e-002
3.8181e-002 1.0274e-002 -5.4727e¢-003 -6.8075e-003 2.1020e-002 1.8500e-002

E =
-2.2149e+002+2.0338e+0021
-2.2149e+002-2.0338e+0021
-1.2561e+002

-1.8483e+000+1.3383e+000i1
-1.8483e+000-1.3383e+0001
-1.0011e+000

To see whether this design is acceptable, we calculate the initial response of the
closed-loop system as follows: '

>>sysi=ss(A-B*Ko,zeros(6,2),C,zeros(2,2));<enter>

>>[Y1,t1,X1]=initial(sys1,[0.1 zeros(1,5)]'); ut=-Ko*X1’; <enter>
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Let us try another design with Q = 0.011, and R = 1. As compared with the
previous design, we are now specifying that it is 100 times more important to
minimize the total control energy than minimizing the total transient energy. The
new regulator gain matrix is determined by re-solving the algebraic Riccati equation
with Q = 0.011 and R =1 as follows:

>>[Ko,Mo,E] = 1gqr(A,B,0.01*eye(6),eye(2)) <enter>

Ko=
1.0780e+000 -1.6677e-001 -4.6948e-002 -7.5618e-002 5.9823e-001 3.5302e-001
1.3785e+000 3.4502e-001 -1.3144e-002 -6.5260e-002 4.7069e-001 3.0941e-001

Mo=
4.1913e-001 1.2057e-001 9.2728e-003 -2.2727e-003 1.4373e-002 1.3785e-002
1.2057¢-001 1.0336e-001 6.1906e-003 -3.9125e-004 -2.2236e-003 3.4502e-003
9.2728e-003 6.1906e-003 1.0649e-002 9.7083e-005 -6.2597e-004 -1.3144e-004
-2.2727e-003 -3.9125e-004 9.7083e-005 1.7764e-004 -1.0082e-003 -6.5260e-004
1.4373e-002 -2.2236e-003 -6.2597e-004 -1.0082e-003 7.9764e-003 4.7069e-003
1.3785€-002 3.4502e-003 -1.3144e-004 -6.5260e-004 4.7069e-003 3.0941e-003

E =
-9.1803e+001

-7.8748e+001+5.0625e+0011
-7.8748e+001-5.0625e+0011i
-1.1602e+000+1.7328e+000i
-1.1602e+000-1.7328e+000i
-1.0560e+000

The closed-loop state-space model, closed-loop initial response and the required
inputs are calculated as follows:

>>sys2=ss(A-B*Ko,zeros(6,2),C,zeros(2,2)); <enter>

>>[Y2,t2,X2] = initial(sys2,[0.1 zeros(1,5)]'); u2=-Ko*X2'; <enter>

Note that the closed-loop eigenvalues (contained in the returned matrix E) of the first
design are further inside the left-half plane than those of the second design, which
indicates that the first design would have a smaller settling time, and a larger input
requirement when compared to the second design. The resulting outputs, y;(¢) and
y2(t), for the two regulator designs are compared with the plant’s initial response
to the same initial condition in Figure 6.1.

The plant’s oscillating initial response is seen in Figure 6.1 to have maximum
overshoots of —20 m/s? and —0.06 rad/s, for y;(t) and y,(t), respectively, and a
settling time exceeding 5 s (actually about 10 s). Note in Figure 6.1 that while
the first design (Q = I, R = I) produces the closed-loop initial response of y,(t),
u1(t), and u,(r) within acceptable limits, the response of y,(t) displays a maximum
overshoot of 10 m/s? (beginning at —15 m/s? at t = 0, and shooting to —25 m/s?),
which is unacceptable. The settling time of the first design is about 3 s, while that
of the second design (Q = 0.011, R = 1) is slightly less than 5 s. The second design
produces a maximum overshoot of y;(¢) less than 2 m/s? and that of y,(r) about
—0.025 rad/s, which is acceptable. The required control inputs, u;(t) and u,(t), for
the two designs are plotted in Figure 6.2. While the first design requires a maximum
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Figure 6.1 Open and closed-loop initial response of the regulated flexible bomber aircraft, for @&
two optimal regulator designs 2
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-0.15 ! '

Figure 6.2 Required initial response control inputs of the regulated flexible bomber aircraft,
for two optimal regulator designs

value of elevator deflection, u(¢), about 0.045 rad., the second design is seen to '
require a maximum value of u(¢) less than 0.02 rad. Similarly, the canard deflection, |
uy(t), for the second design has a smaller maximum value (—0.04 rad) than that of |
. the first design (—0.1 rad.). Hence, the second design fulfills all the design objectives. §
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In Example 6.1, we find that the total transient energy is more sensitive to the settling
time, than the maximum overshoot. Recall from Chapter 5 that if we try to reduce the
settling time, we have to accept an increase in the maximum overshoot. Conversely, to
reduce the maximum overshoot of y;(¢), which depends upon all the state variables, we
must allow an increase in the settling time, which is achieved in the second design by
reducing the importance of minimizing the transient energy by hundred-fold, as compared
to the first design. Let us now see what effect a measurement noise will have on the closed-
loop initial response. We take the second regulator design (i.e. Q = 0.01I, R =1I) and
simulate the initial response assuming a random error (i.e. measurement noise) in feeding
back the pitch-rate (the second state-variable of the plant). The simulation is carried out
using SIMULINK block-diagram shown in Figure 6.3, where the measurement noise is
simulated by the band-limited white noise block with a power parameter of 10~*. Note the

Normal

L) acceleration | rit(;h-rate
(y1) y2

(o]

_|X'=Ax+Bu K0

“ly=Cx+Du Measurement

Flexible bomber noise in
aircraft pitch-rate
++ “u JLlrUII'
_ (010000}

&
@2
E
=
-30 i | | J 1 1 1 1 | 1
2 4 6 8 10 12 14 16 18 20
Time (s)
0.15 T T T T T T T T T
£ o1} .
o
; 0.05 —
=
> 0—\ W%MWMJ
-0.05 1 | B | | )| 1 I 1
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 6.3 Simulation of initial response of the flexible bomber with a full-state feedback regulator
and measurement noise in the pitch-rate channel
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manner in which the noise is added to the feedback loop through the matrix gain block.
The simulated initial response is also shown in Figure 6.3. Note the random fluctuations in
both normal acceleration, y;(¢), and pitch-rate, y>(¢). The aircraft crew are likely to have
a rough ride due to large sustained fluctuations (10 m/s?) in normal acceleration, vi (1),
resulting from the small measurement noise! The feedback loop results in an amplification
of the measurement noise. If the elements of the feedback gain matrix, K, corresponding
to pitch-rate are reduced in magnitude then the noise due to pitch-rate feedback will
be alleviated. Alternatively, pitch-rate (or any other state-variable that is noisy) can be
removed from state feedback, with the use of an observer based compensator that feeds
back only selected state-variables (see Chapter 5).

Example 6.2

Let us design an optimal regulator for the flexible, rotating spacecraft shown in 2
Figure 6.4. The spacecraft consists of a rigid hub and four flexible appendages, each
having a tip mass, with three forque inputs, u;(t), u(t), us(t), and three angular
rotation outputs in rad., y;(¢), y2(¢), y3(¢). Due to the flexibility of the appendages,
the spacecraft is a distributed parameter system (see Chapter 1). However, it is |
approximated by a lumped parameter, linear, time-invariant state-space representa-
tion using a finite-element model [3]. The order of the spacecraft can be reduced |
to 26 for accuracy in a desired frequency range [4]. The 26th order state-vector,
x(1), of the spacecraft consists of the angular displacement, y;(¢), and angular
velocity of the rigid hub, combined with individual transverse (i.e. perpendicular
to the appendage) displacements and transverse velocities of three points on each
appendage. The state-coefficient matrices of the spacecraft are given as follows:

A= [_MO—IK (I)] B= [M(‘)ld] C=[d"; 0]; D=0 (634
where M, K, and d are the mass, stiffness, and control influence matrices, given in
Appendix C.

/—.\ 92, Us

03, Ug

o

Figure 6.4 A rofating, flexible spacecraft with three inputs, {u1, us, u3), and three outputs &
{61, 67, 63) ‘
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The eigenvalues of the spacecraft are the following:

>>damp (A) <enter>

Eigenvalue Damping Freq. (rad/sec)
9.4299e-013+7.6163e+0031 -6.1230e-017 7.6163e+003
9.4299¢-013-7.6163e+0031 -6.1230e-017 7.6163e+003
8.1712e-013+4.7565e+0041i -6.1230e-017 4.7565e+004
8.1712e-013-4.7565e+0041 -6.1230e-017 4.7565e+004
8.0539e-013+2.5366e+0031 -2.8327e-016 2.5366e+003
8.0539e-013-2.5366e+0031 -2.8327e-016 2.5366e+003
7.4867e-013+4.7588e+0041 -6.1230e-017 4.7588e+004
7.4867¢-013-4.7588e+0041 -6.1230e-017 4.7588e+004
7.1276e-013+2.5982e+004 1 -6.1230e-017 2.5982e+004
7.1276e-013-2.5982e+0041 -6.1230e-017 2.5982e+004
5.2054e-013+1.4871e+0041 -6.1230e-017 1.4871e+004
5.2054e-013-1.4871e+0041 -6.1230e-017 1.4871e+004
4.8110e-013+2.0986e+0021 -2.2817e-015 2.0986e+002
4.8110e-013-2.0986e+0021 -2.2817e-015 2.0986e+002
4.4812e-013+2.6009e+0041 -6.1230e-017 2.6009e+004
4.4812e-013-2.6009e+0041 -6.1230e-017 2.6009e+004
3.1387¢-013+7.5783e+0031 -6.1230e-017 7.5783e+003
3.1387e-013-7.5783e+0031 -6.1230e-017 7.5783e+003
2.4454e-013+3.7952e+0021 -7.2736e-016 3.7952e+002
2.4454e-013-3.7952e+0021 -7.2736e-016 3.7952e+002
0 -1.0000e+000 O
(0] -1.0000e+000 O
-9.9504e-013+2.4715e+0031i 3.8286e-016 2.4715e+003
-9.9504e-013-2.4715e+0031 3.8286e-016 2.4715e+003
-1.1766e-012+1.4892e+0041i 1.6081e-016 1.4892e+004
-1.1766e-012-1.4892e+0041 1.6081e-016 1.4892e+004

Clearly, the spacecraft is unstable due to a pair of zero eigenvalues (we can
ignore the negligible, positive real parts of some eigenvalues, and assume that
those real parts are zeros). The natural frequencies of the spacecraft range from
0 to 47588 rad/s. The nonzero natural frequencies denote structural vibration of
the spacecraft. The control objective is to design a controller which stabilizes
the spacecraft, and brings the transient response to zero within 5 s, with zero
maximum overshoot, while requiring input torques not exceeding 0.1 N-m, when the
spacecraft is initially perturbed by a hub rotation of 0.01 rad. due to the movement
of astronauts. The initial condition corresponding to the initial perturbation caused
by the astronauts’ movement is x(0) = [0.01; zeros(1,25)}". Let us see whether the
spacecraft is controllable:

>>rank(ctrb(A,B)) <enter>
ans=

6
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Since the rank of the controllability test matrix is less than 26, the order of the
plant, it follows that the spacecraft is uncontrollable. The uncontrollable modes are
the structural vibration modes, while the unstable mode is the rigid-body rotation
with zero natural frequency. Hence, the spacecraft is stabilizable and an optimal
regulator can be designed for the spacecraft, since stabilizability of the plant is a
sufficient condition for the existence of a unique, positive definite solution to the
algebraic Riccati equation. Let us select Q = 2001, and R = I, noting that the size
of Q is (26 x 26) while that of R is (3 x 3), and solve the Riccati equation using

lgr as follows: :

>>[Ko,Mo,E] = 1qr(A,B,200*eye(26),eye(3)); <enter>

A positive definite solution to the algebraic Riccati equation exists for the present
choice of Q and R, even though the plant is uncontrollable. Due to the size of the
plant, we avoid printing the solution, Mo, and the optimal feedback gain matrix.
Ko, here, but the closed-loop eigenvalues, E, are the following:

E =

-1.7321e+003+4.7553e+0041
-1.7321e+003-4.7553e+0041
-1.7502e+003+4.7529e+0041
-1.7502e+003-4.7529e+0041
-1.8970e+003+2.5943e+0041
-1.8970e+003-2.5943e+0041
-1.8991e+003+2.5916e+0041
-1.8991e+003-2.5916e+0041
-1.8081e+003+1.4569e+0041
-1.8081e+003-1.4569e+0041
-1.8147e+003+1.4550e+0041
-1.8147e+003-1.4550e+0041
-7.3743e+002+7.6536e+0031
-7.3743e+002-7.6536e+0031
-7.3328e+002+7.6142e+0031
-7.3328e+002-7.6142e+0031
-2.6794e+002+2.5348e+0031
-2.6794e+002-2.5348e+0031
-2.5808e+002+2.4698e+0031
-2.5808e+002-2.4698e+0031
-3.9190e+001+3.7744e+0021
-3.9190e+001-3.7744e+0021
-1.1482e+000+4.3165e-0011
-1.1482e+000-4.3165e-0011
-1.8066e+001+2.0911e+0021
-1.8066e+001-2.0911e+0021i

All the closed-loop eigenvalues (contained in the vector E) have negative real-parts,
indicating that the closed-loop system is asymptotically stable, which is a bonus! Let
us check whether the performance objectives are met by this design by calculating

the closed-loop initial response as follows: "
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