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298 LINEAR OPTIMAL CONTROL

>>sysCL=ss(A-B*Ko,zeros(26,3),C,D); <enter>

>>[y,t,X] = initial(sysCL, [0.01 zeros(1, 25)}'); u = -Ko*X'; <enter>

The closed-loop outputs, y;(t), y2(¢t), and y3(t), and the required torque inputs,
uy(t), ux(t), and us(r), are plotted in Figure 6.5. We see from Figure 6.5 that all
the three outputs settle to zero in 5 s, with zero overshoot, and that the input torque
magnitudes are smaller than 0.1 N-m, as desired. Therefore, our design is successful
in meeting all the performance objectives and input effort limits.
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Figure 6.5 Closed-loop initial response and required inputs of the regulated flexible spacecraft
for optimal regulator designed with @ = 2001 and R = |

Examples 6.1 and 6.2 illustrate two practical problems, one with a controllable plant,
and the other with an uncontrollable plant, which are successfully solved using linear
optimal control. Note the ease with which the two multi-input problems are solved
when compared with the pole-placement approach (which, as you will recall, would have
resulted in far too many design parameters than can be fixed by pole-placement). We will
now consider the application of optimal control to more complicated problems.

6.3 Optimal Control of Tracking Systems

Consider a linear, time-varying plant with state-equation given by Eq. (6.1). It is required
to design a tracking system for this plant if the desired state-vector, x4(t), is the solution
of the following equation:

xa'V (1) = Ag(t)xa(1) (6.35)
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Recall from Chapter S that the desired state dynamics is described by a homogeneous
state-equation, because x4(¢) it is unaffected by the input, u(z). Subtracting Eq. (6.1) from
Eq. (6.35), we get the following state-equation for the tracking-error, e(r) = xq(t) — x(1):

e (1) = A()er) + [Ag(t) — A(1)]xa(t) — B(O)u(r) (6.36)

The control objective is to find the control input, u(z), such that the tracking-error, e(t),
is brought to zero in the steady-state. To achieve this objective by optimal control, we
have to first define the objective function to be minimized. Note that, as opposed to the
regulator problem in which the input u(r) = —K(#)x(z), now the control input will also
depend linearly on the desired state-vector, x4(z). If we express Eqgs. (6.1) and (6.35) by
a combined system of which the state-vector is x.(f) = [e(t)7; xq(t)T]”, then the control
input must be given by the following linear control-law:

u(t) = —K(0)xc (1) = —Ke(O)[e); xa()7]7 (6.37)

where K () is the combined feedback gain matrix. Note that Egs. (6.35) and (6.36) can
be expressed as the following combined state-equation:

x (1) = Ac(O)Xc (1) + Be(2)u(r) (6.38)
where
_TA@® [Aq() - AWM. | -B®
Ac(t)~[ 0 Ag() ] Bc(t)-—-[ 0 ] (6.39)

Since Egs. (6.1) and (6.2) are now replaced by Eqgs. (6.38) and (6.37), respectively, the
objective function for the combined system can be expressed as an extension of Eq. (6.3)
as follows:

st = [T OQR ) + 0 OR@UD] (6.40)

Note that although we desire that the tracking error, e(¢) = x4(¢) — x(t), be reduced to
zero in the steady-state (i.e. when t — 00), we cannot pose the tracking system design as
an optimal control problem with infinite control interval (i.e. t; = 00). The reason is that
the desired state-vector, xq(¢) (hence x.(¢)), may not go to zero in the steady-state, and
thus a non-zero control input, u(¢), may be required in the steady-state. Also, note that
the combined system described by Eq. (6.38) is uncontrollable, because the desired state
dynamics given by Eq. (6.35) is unaffected by the input, u(r). Therefore, the combined
system’s optimal control problem, represented by Egs. (6.37)—(6.40) is not guaranteed
to have a unique, positive definite solution. Hence, to have a guaranteed unique, positive
definite solution to the optimal control problem, let us exclude the uncontrollable desired
state-vector from the objective function, by choosing the combined state-weighting matrix

as follows:
_ Q@) 0
Qc(t)—-|: 0 0] (6.41)
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300 LINEAR OPTIMAL CONTROL

which results in the following objective function:

1
T, 1) = / "€ (0)Q)e(r) + uT(D)R()u(r)] dr (6.42)

which is the same as Eq. (6.3), with the crucial difference that u(z) in Eq. (6.42) is given
by Eq. (6.37), rather than Eq. (6.2). By choosing Q(¢) and R(z) to be positive semi-
definite and positive definite, respectively, we satisfy the remaining sufficient conditions
for the existence of a unique, positive definite solution to the optimal control problem.
Note that the optimal feedback gain matrix, Ky (2), is given by the following extension
of Eq. (6.28):

Koe(r) = R7H(H)BY (1M (6.43)

where M, is the solution to the following Riccati equation:
—0Moe /1 = A ()Mo + MocAc(r) — MocBe(DR™ (1)BJ (1)Moc + Qe(1)  (6.44)

subject to the terminal condition, Moc(ts,tr) = 0. Since M, is symmetric (see
Section 6.1), it can be expressed as

M, = [%: :II::] (6.45)
0.

where My; and M, correspond to the plant and the desired state dynamics, respectively.
Substituting Eqgs. (6.45) and (6.39) into Eq. (6.43), we can express the optimal feedback
gain matrix as follows:

Koc () = ~[R7'(0)BT()Mo1; R7'(0)BT(1)M,2] (6.46)

and the optimal control input is thus obtained by substituting Eq. (6.46) into Eq. (6.37)

as follows:
u(r) = R (BT ()M e(r) + R™' ()BT (1)Meaxa(r) (6.47)

Note that Eq. (6.47) does not require the sub-matrix, My3. The individual matrix differ-
ential equations to be solved for My; and My, can be obtained by substituting Eqgs. (6.39)
and (6.45) into Eq. (6.44) as follows:

—3Mg1/3t = AT()My1 + Mo1A(t) — MotB(OR™' ()BT ()M +Q(1)  (6.48)
—0M,2/3t = Mg2Aq(t) + Mo1[Ad(r) — A(1)]

+[AT(1) - MuB(OR™' ()BT (1) IM,2 (6.49)

Note that Eq. (6.48) is identical to the matrix Riccati equation, Eq. (6.29), which can be

solved independently of Eq. (6.49), without taking into account the desired state dynamics.

Once the optimal matrix, My, is obtained from the solution of Eq. (6.48), it can be

substituted into Eq. (6.49), which can then be solved for M,z. Equation (6.49) is a linear,
matrix differential equation, and can be written as follows:

—0M,3/8t = Mp2Ad(1) + Mo1[Aa(t) — A()] + AL (OMg, (6.50)
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where Acp,(f) = A(@r) — B@OR™1 ()BT (1)M,;, the closed-loop state-dynamics matrix. The
solution of the optimal tracking system thus requires the solution of the linear differential
equation, Eq. (6.50), in addition to the solution of the optimal regulator problem given by
Eq. (6.48). The solutions of Eqs. (6.48) and (6.49) are subject to the terminal condition,
Mo (tf, tr) = 0, which results in Mgy (¢, t7) = 0, and My, (t5, t7) = 0.

Often, it is required to track a constant desired state-vector, X4(#) = X3, which implies
Agq(z) = 0. Then the matrices My; and My, are both constants in the steady-state (i.e.
ty = oc), and are the solutions of the following steady-state equations (obtained by
setting Mgy /9t = 0M,2/0t = 0 and Aq(z) = 0 in Egs. (6.48) and (6.49)):

0 = AT(1)Mo; + MyiA(r) — M B(OR™ ()BT (1 )My + Q(2) (6.51)
0= —MuA(t) + AL ()M (6.52)

We immediately recognize Eq. (6.51) as the algebraic Riccati equation (Eq. (6.32)) of
the steady-state, optimal regulator problem. From Eq. (6.52), we must have

Mz = [ALL(D]T ' MaA() (6.53)

where M,y is the solution to the algebraic Riccati equation, Eq. (6.51). Note, however,
that even though M,; and My, are finite constants in the steady-state, the matrix My,
is not a finite constant in the steady-state, because as x(#;) tends to a constant desired
state in the limit 7, — oo, the objective function (Eq. (6.42)) becomes infinite, hence a
steady-state solution to Eq. (6.44) does not exist. The only way My can not be a finite
constant (when both M,; and M,;; are finite constants) is when M3 (the discarded matrix
in Eq. (6.45)) is not a finite constant in the steady-state.

Substituting Eq. (6.53) into Eq. (6.47), we get the following input for the constant
desired state vector, Xg:

u(t) = R @OBT (OMgre(r) + R™'(OBT(O[ALL ()] ' Ma A()x§ (6.54)

Substituting Eq. (6.54) into Eq. (6.36), we get the following closed-loop tracking error
state-equation with Ag(¢) = 0 and x4(¢) = xg:

el (1) = Acp(e(t) — [A(1) + BOROBT(){ATL (1)) "M A% (6.55)

From Eq. (6.55), it is clear that the tracking error can go to zero in the steady-state
(i.e. as t — oo) for any non-zero, constant desired state, xg, if Acr(¢) is asymptotically
stable and

A +BOROBTO{ALL(D)) "M A(r) = 0 (6.56)

or

MuA(1) = — [BOR OBY AL (0O} '] 7 AG) = —AL (OBOROBT (1)} A1)
6.57)
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Equation (6.57) can be expanded to give the following equation to be satisfied by M,
for the steady-state tracking error to be zero:

MaA() = -ATOBORIOBT)}'AW) + Mg A®Q) (6.58)

which implies that AT(){B()R™!()BT(1)}'A(r) =0, or {B(H)R™'()BT(1)}~' =0.
Clearly, this is an impossible requirement, because it implies that R(r) = 0. Hence, we
cannot have an optimal tracking system in which the tracking error, e(s), goes to zero
in the steady-state for any constant desired state-vector, xg. As in Chapter 5, the best
we can do is to have e(r) going to zero for some values of x§. However, if we want
this to happen while satisfying the optimality condition for My, given by Eq. (6.53), we
will be left with the requirement that [A(r) + B(OR™1 ()BT (1){AL, (1)} "My A(1)]x5= 0
for some non-zero x§, resulting in {B(H)R™1(1)BT(1)}~'A(1)x§ = 0, which implies that
{B(OR™1)BT(r)}~! must be a singular matrix — again, an impossible requirement.
Therefore, the only possible way we can ensure that the tracking error goes to zero for
some desired state is by dropping the optimality condition on M, given by Eq. (6.53).
Then we can write the input vector as follows:

u(r) = R7(OBT(1)Mgre(r) — Ka(1)x§ (6.59)

where Ky(t) is the (non-optimal) feedforward gain matrix which would make e(z) zero
in the steady-state for some values of xj. Substituting Eq. (6.59) into Eq. (6.36) we get
the following state-equation for the tracking error:

e(1) = AcL(n)e(r) — [A(r) — B()Ka(0)]xg (6.60)

Equation (6.60) implies that for a zero steady-state tracking error, Kq(¢) must be selected
such that [A(t) — B(1)Kq4(7)]xg = 0. The closed-loop state-dynamics matrix, Acr, in
Eq. (6.60) is an optimal matrix given by Acp(r) = A(t) — B(t)R™1(1)BT ()M, where
M,, is the solution to the algebraic Riccati equation, Eq. (6.51). Hence, the design of
a tracking system does not end with finding a unique, positive definite solution, My,
to the algebraic Riccati equation (which would make Acy(r) asymptotically stable);
we should also find a (non-optimal) feedforward gain matrix, K4(z), such that [A(s) —
B(1)Kq(1)]x§ = 0 for some values of the constant desired state-vector, Xg. Note that if the
plant has as many inputs as there are state variables, then B(t) is a square matrix, and it
would be possible to make e(r) zero in the steady-state for any arbitrary x3, by choosing
Ka(t) = B ' (HA@) (provided B(r) is non-singular, i.e. the plant is controllable.)

Example 6.3

Consider the amplifier-motor of Example 3.7, with the numerical values given
as J =1 kg.m?, R = 1000 ohms, L = 100 henry, a = 0.3 kg.m?/s*/Ampere, and
K4 = 10. Recall from Example 3.7 that the state-vector of the amplifier-motor is
x(t) = [0(1);: 6V (2); i ()], where 6(¢) is the angular position of the load on the
motor, and i(z) is the current supplied to the motor. The input vector is u(t) =
[v(r); TL()]", where v(t) is the input voltage to the amplifier and Ty (¢) is the
torque applied by the load on the motor. It is desired to design a tracking system

EBSCChost - printed on 10/27/2025 6:07 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use



OPTIMAL CONTROL OF TRACKING SYSTEMS 303

such that the load on the motor moves from an initial angular position, 6(0) =0, §
to desired angular position 64(t) = 0.1 rad. in about six seconds, and comes to
rest at the desired position. The maximum angular velocity of the load, 8V (r),
should not exceed 0.05 rad/s. After the load comes to rest at the desired position,
the current supplied to the motor should be zero. The desired state-vector is thus
xg =[0.1;0; 0]7. The plant’s state coefficient matrices are the following:

0 1 0 0 0
A=|0 —001 03|: B=|0 -1

0 —0.003 —10 0.1 0

1 00 0 0 u
e[ 0 9] »=[0 9] 661

The eigenvalues of the linear, time-invariant plant are calculated as follows:
>>damp(A) <enter>

Eigenvalue Damping Freq. (rad/sec)

0 -1.0000 O
-0.0101 1.0000 0.0101
-9.9999 1.0000 9.9999

The plant is stable, with an eigenvalue at the origin. Since the plant is time-invariant,

the controller gain matrices must be constants. Let us first find the optimal feedback
gain matrix, Ko; = —R™'BT™,; by choosing Q =1 and R =1, and solving the |
algebraic Riccati equation as follows: '

>>[Ko1,Mo1,E] = 1qr(A,B,eye(3),eye(2)) <enter>

Kol =
0.0025 0.0046 0.0051
-1.0000 -1.7220 -0.0462

Mot =
1.7321 1.0000 0.0254
1.0000 1.7220 0.0462
0.0254 0.0462 0.0513

E =

-10.0004

-0.8660 + 0.50001
-0.8660 - 0.5000i1

The closed-loop eigenvalues are all in the left-half plane, as desired for asymptotic
stability of the tracking error dynamics. Next, we calculate the feedforward gain
matrix, K4, which will make the steady-state tracking error zero for the specified
cf:o;;stant desired state, xg. This is done by selecting Kq such that Axj = BKgxg as |
ollows:
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304 LINEAR OPTIMAL CONTROL

Ky Koo Ka3
— 6.62
Ka [Kd4 Kas Kd6] (6.62)
0
BKdXﬁ = —O.IKd4 (6.63)
0.01Ky;

Therefore, Axg = BKgxj implies that Kq; = 0 and K44 = 0. We can also choose the
remaining elements of Kq4 as zeros, and still satisfy Axy = BKgxy. Hence, K4 = 0,
and the control input is given by u(r) = Kqe(?).

Let us obtain the tracking error response of the system to the initial tracking
error, e(0) = x§—x(0) = xj (since x(0) = 0) as follows:

>>t=0:0.05:6; sysCL=ss(A-B*Ko1, zeros(3,2),C,D); [y,t,e]
= initial(sysCL, [0.1 0 0]’); <enter>

Then, the state-vector, x(¢), of the closed-loop system can be calculated using x(z) =
xg — e(?) as follows:

>>p=size(t, 1); for i=1:n; Xd(i,:)=[0.1 0 O]; end; X=Xd-e; <enter>
while the input vector, u(t), is calculated as
>>u = Koil*e’; <enter>

The calculated state variables, 0(t), 6V(¢), i(t), the input voltage, v(t), and the
loading torque, T, (¢), are plotted in Figure 6.6. Note that all the state variables
reach their desired values in about 6 s, with a maximum overshoot in angular
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Figure 6.6 Closed-loop initial response of the tracking system for amplifier-motor, with constant
desired state, 8(f) = 0.1 rad, 8" () = 0 rad, and i(t) = O amperes
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OPTIMAL CONTROL OF TRACKING SYSTEMS 305

velocity, 6V (¢), of about 0.04 rad/s, and the maximum overshoot in current, i (),
of —12.5 x 107® A. The maximum input voltage, v(z), is 2.5 x 107* V and the
maximum loading torque is —0.1 N-m.

Using SIMULINK, let us now investigate the effect of an uncertainty in the
amplifier gain, K4, on the tracking system. A SIMULINK block-diagram of the
closed-loop tracking system is shown in Figure 6.7. The uncertainty in the amplifier
| gain, AK 4, affects only the third state-variable, i(¢), and is incorporated into the

Xd
J\?‘ [0.1:0:0] =
kX 7 A theta
S|
I 1 A theta dot
+ s
B Amplifier-motor 1
] [001]! i*delKA i
/l Uncertainty in
TL \Q h X le amplifier gain
1 delKA i w
e |
v

A

() (rad)

Tt (N-m)
o
1

_01 1 | | | i 1 ! ] !
1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 6.7 Simulation of the fracking system for amplifier-motor, with uncertainty in the
| amplifier gain, Ka :
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plant dynamics model using the band-limited white noise block output, A K 4, multi-
plied with the vector [0; 0; i (H]", and added to the summing junction, which results
in the plant dynamics being represented as xV(t) = (A + AA)X(t) + Bu(r), where

0 00
AA=1]0 0 O (6.64)
0 0 AK4

The simulated values of AK,, 6(t), and T (t) are shown in Figure 6.7. Note that
despite a random variation in K4 between 10, the tracking system’s performance
is unaffected. This signifies a design which is quite robust to variations in K 4.

Example 6.4

For a particular set of flight conditions, the lateral dynamics of an aircraft are
described by a linear, time-invariant state-space representation with the following
coefficient matrices:

-975 0 -9.75 0 20 277
0 -08 8§ 0 0 -3

A=l o -1 08 of P=lo o (6.65)
1 0 0 0 0 0

The state-vector consists of the roll-rate, p(t), yaw-rate, r(t), side-slip angle, B(t),
and bank angle, ¢(t), and is written as x(t) = [p(t); r(t); B(2); @(1)]7. The input
vector consists of the aileron deflection angle, 5(t), and rudder deflection angle,
Sr(1), i.e. u(t) = [84(2); 8gr(1)]7. It is desired to execute a steady turn with a
constant yaw-rate, rq(t) = 0.05 rad/s, a constant bank angle, ¢4(¢) = 0.02 rad, and
zero roll-rate and sideslip angle, p;(r) = ¢4(¢) = 0. The desired state-vector is thus
x§ = [0; 0.05; 0; 0.02]”. The desired state must be reached in about two seconds,
with a maximum roll-rate, p(r), less than 0.1 rad/s and the control inputs (84(?)
and 8g(r)) not exceeding 0.3 rad. Let us first select a feedforward gain matrix, Kg,
which satisfies Ax§ = BKgxg as follows:

Kot Koo Koz Kas ]
- (6.66

Ka [ Kas Kgo Ka7 Kas )
20(0.05K 4> + 0.02K44) + 2.77(0.05K g6 + 0.02K 43) 0
BKxg = | ~3(0-05Kss +0.1Kap) a0
0 0
0 0

6.67)

Equation (6.67) indicates that, to make Axj = BKgxj, we must have 0.05Kq6 +
0.02K 45 = 0 and 0.05K4>+0.02 K44 =0, which can be satisfied by selecting K4 =0.
It now remains for us to calculate the optimal feedback gain matrix, K,1, by solving
the algebraic Riccati equation. Note that the plant is stable with the following
eigenvalues:
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>>damp (A) <enter>

Eigenvalue Damping Freq. (rad/sec)
0 -1.0000 0
-0.8000 + 2.8284i 0.2722 2.9394
-0.8000 - 2.82841i 0.2722 2.9394
-9.7500 1.0000 9.7500

Let us select R = I. After experimenting with several values of Q, we select the
following which satisfies the desired transient response and input limitations:

20 0 O 0
0 10 O 0 j
Q=10o 01 o (6.68) |
0 0 0 200
With this combination of Q and R, the algebraic Riccati equation is solved as
follows:
>>[Ko1,Mo1,E] = 1lqr(A,B,Q,R) <enter>
Kot =
4.1351 0.3322 -0.2935 14.0420
0.5229 -2.7651  -1.1575 1.6797
Mo1 =

0.2068 0.0166 -0.0147 0.7021
0.0166 0.9370 0.3723 0.0884
-0.0147 0.3723 3.6355 -0.0908
0.7021 0.0884 -0.0908 65.7890

E =
-90.7740
-8.4890
-3.1456
-1.3872

The initial response of the tracking error, e(z), to x(0) = 0 is calculated as
follows:

>>sysCL=ss(A-B*Ko1,zeros(4,2),eye(4),zeros(4,2)); <enter>
>>t=0:0.001:2; [y,t,e}=initial(sysCL,[0 0.05 0 0.02],t); <enter>
and the state-vector and control input vector are then calculated as

>>n = size(t,1); for i=1:n; Xd(i,:) = [0 0.05 0 0.02]; end; X = Xd-e;
u = -Ko1*e’; <enter>

The calculated state-vector, x(7), and input vector, u(¢), are plotted in Figures 6.8 |
and 6.9, respectively. Note that all the transients settle to their desired values in about
two seconds, with a maximum overshoot in roll-rate, p(r), of less than 0.06 rad/s,
and a small maximum side-slip angle, B(¢). The aileron and rudder deflections are }
seen in Figure 6.9 to be less than 0.3 rad. as desired.
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