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Figure 6. 11 Simulated initial response of the flexible bomber with an output-weighted optimal
regulator including measurement noise in the pitch channel (SIMUUNK block-diagram of Figure 6.3)

6.5 Terminal Time Weighting: Solving the Matrix
Riccati Equation

Thus far, we have considered the optimal control problems in which the closed-loop
system is brought to a desired state by minimizing the deviation of the transient response
from the desired state. However, sometimes it is also important to minimize the deviation
of the system from the desired state at a specified final time, tf. In other words, it is not
only important to reach the final state, but to reach there in a specified final time, r/, called
the terminal time. By assigning a weightage to the state of the system at the terminal time,
x(f/), in the objective function to be minimized, we can specify the relative importance of
minimizing the deviation from the final state. The objective function with terminal time
weighting can be expressed as follows:

J ( t , t f ) = />

Jt
[xT(r)Q(T)x(r) +uT(r)R(r)u(r)]dr + xT(r/)Vx(f/) (6.77)

where V is the constant terminal time weighting matrix. For minimizing the objective func-
tion given by Eq. (6.77) for the optimal regulator problem (i.e. when u(t ) = — Ko(f )x(f )),
it can be shown using steps similar to those in Section 6. 1 , that the optimal feedback gain
matrix is given by

= R~1(OBT(f)M0 (6.78)
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where M0 is the solution to the matrix Riccati equation, Eq. (6.29), repeated here as
follows:

-BMo/Bt = AT(OM0 + M0A(0 - M0B(r)R~1(OBT(r)M0 + Q(t) (6.79)

subject to the following terminal condition:

M0(r/,f/) = V (6.80)

Hence, the terminal time weighted problem differs from the standard problem of
Section 6.1 only in the non-zero terminal condition for the matrix Riccati equation.

Note that the terminal time weighted optimal control cannot be simplified in a manner
similar to the infinite time control, which results in an algebraic Riccati equation. In
other words, we cannot avoid taking the bull by the horns anymore; we have to solve
the matrix Riccati equation if we want to solve the terminal time control problem. For
simplicity, let us confine ourselves to time-invariant plants only, \(t) = A, B(f) = B,
and Q(t) = Q, R(0 = R, where A, B,Q, and R are constants. Then the matrix Riccati
equation becomes

-BMo/Bt = ATM0 + M0A - M0BR~1BTM0 + Q (6.81)

which is to be solved with the terminal condition given by Eq. (6.80). We remarked in
Section 6.1 on the difficulty of solving the matrix Riccati equation, owing to its nonlinear
nature. However, if we look carefully at Eq. (6.81), we find that by expressing M0 in the
following manner

Mo(r, tf) = E(t, tfW~l(t, tf) (6.82)

where E(t, tf) and F(r, tf) are two unknown matrices, we can write Eq. (6.81), as the
following set of coupled, linear differential equations:

[ d¥(t, tf)/dt ] r A -BR-'BT 1 r F<r, tf) -I
[dE(t,tf)/dt\-[-Q -AT \[E(t,tf)\

 (6'83)

If we define a matrix H, called the Hamiltonian, as follows

H = [_Q ^R
AT] (6.84)

then we can write the solution to the homogeneous set of first order, matrix differ-
ential equation, Eq. (6.83), as an extension of the solution given by Eq. (4.16) to the
homogeneous, vector state-equation. Hence, we can write

where exp{H(f — tf)} is a matrix exponential which can be calculated by the methods
of Chapter 4. To satisfy the terminal condition, Eq. (6.80), we can choose E(r/, tf) — V,
and F(f/,r/) = I. Thus, for a given time, t, the matrices E ( t , t f ) and ¥(t,tf) can be
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314 LINEAR OPTIMAL CONTROL

calculated using Eq. (6.85), where the matrix exponential, exp{H(f — ff)}, is calculated by
an appropriate algorithm, such as expm, expml, expm2, or expmS of MATLAB. However,
care must be taken to select Q and R matrices, such that the calculated matrix F(/, //)
is non-singular, otherwise M0 cannot be computed using Eq. (6.82). A MATLAB M-
file called matricc.m, which solves the matrix Riccati equation for linear, time-invariant
systems using Eq. (6.85) is given in Table 6.1, and can be called as follows:

»Mo = matricc(A,B,Q,R,V,t,tf ,dt) <enter>

where A, B, Q, R, V, t, and f/(f/) are the same as in Eq. (6.77), dt is the time-step, and
Mo(M0) is the returned solution of the matrix Riccati equation, Eq. (6.81).

For solving the terminal time weighted optimal control problem, it is clear that
while the matrix Riccati equation is solved by marching backwards in time using
Eq. (6.85) - starting with the terminal condition, Eq. (6.82) - the state-equation of the
closed-loop system must be solved by marching forwards in time using the methods
of Chapter 4, starting with the initial condition, x(r0) = xo. Hence, the solution requires
marching in both forward and backward direction (in time), beginning from the conditions
specified at the two time boundaries, i.e. the terminal time, //, and initial time, ?o- For this
reason, the general optimal control problem is referred to as two-point boundary-value
problem. We can write a computer program combining the solution to the matrix Riccati
equation and the solution to the closed-loop state-equation. Such a program is given
in Table 6.2 as an M-file called tpbvlti.m, which solves the two-point boundary-value

Table 6.1 Listing of the M-file matricc.m for the solution of the terminal-time weighted,
linear optimal control problem

matricc.m

function M=matricc(AJB,Q,RJV,t>tf);
% Program for solving the Matrix Riccati equation resulting
% from the terminal-time weighted optimal control problem for
% linear, time-invariant systems.
% A = State dynamics matrix of the plant
% B = Input coefficient matrix of the plant
% Q = State weighting matrix
% R = Control weighting matrix
% V = Terminal state weighting matrix
% t = present time
% tf = terminal time
% M = returned solution of the Matrix Riccati equation
% Copyright(c)2000 by Ashish Tewari
%
% Construct the Hamiltonian matrix:-
H=[A -B*inv(R)*B';-Q -A'];
% Solve the Matrix Riccati equation using the matrix exponential:-
n=size(A,1);
FE=expm2(H*(t-tf))*[eye(n);V];
F=FE(1:n,:);E=FE(n+1:2*n,:);
M=E*inv(F);
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Table 6.2 Listing of the M-file tpbvlti.m for solving the two-point boundary value problem associated
with the solution of the closed-loop state-equations with a terminal-time weighted, linear time-invariant,
optimal regulator

tpbvlti.m

function [u,X,t] = tpbvltiCA.B.Q.RjVjtO.tf ,XO)
% Time-marching solution of the two-point boundary-value problem
% resulting from the terminal- time weighted, optimal regulator
% for a linear, time- invariant system.
% A= State dynamics matrix of the plant
% B= Input coefficient matrix of the plant
% Q= State weighting matrix
% R= Control weighting matrix
% V= Terminal state weighting matrix
% tO= initial time; tf= terminal time (tf-tO should be small for
% convergence)
% X0= initial state vector; t= time vector
% u=matrix with the ith input stored in the ith column, and jth row
% corresponding to the jth time point
% X= returned matrix with the ith state variable stored in the ith column,
% and jth row corresponding to the jth time point
% copyright (c)2000 by Ashish Tewari
[w,z]=damp(A) ;
mw=max(w) ;
if mw==0 ;
dt=(tf-tO)/20;
else
dt=1 /max(w) ;
end
t=tO:dt:tf ;
n=size(t,2) ;
% initial condition :-
X(1,:)=XO';
% solution of the matrix Riccati equation for t=tO:-
M=matricc(A,B,Q,R,V,tO,tf ) ;
% calculation of input vector for t=tO:-
u(1 , : )=-X(1, : )*M*B*inv(R);
% beginning of the time-loop: -
for i=1 :n-1
% solution of the matrix Riccati equation : -
M=matricc(A,B,Q,R,V,t(i),tf ) ;
% calculation of the closed-loop state-dynamics matrix
Ac=A-B*inv(R)*B'*M;
% conversion of system from continuous-time to digital
[ad,bd]=c2d(Ac,B,dt);
% solution of digitized closed-loop state-equations

% updating the input vector for time t=t(i):-
u(i+1 , : )=-X( i+1 , : )*M*B*inv(R);
end
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316 UNEAR OPTIMAL CONTROL

problem for a linear, time-invariant plant using matricc.m for the solution of matrix
Riccati equation. This M-file can be used as follows:

»[u,X,t] = tpbvltMA.B.Q^V.tO.tf ,XO) <enter>

where A, B, Q, R, V, t, and tf(tf) have their usual meanings, fO is the initial time at
which the initial condition vector, xO, is specified, and u, x, and t contain the returned
input, state and time vectors, respectively. However, the usage of this M-file is restricted
to small value of the interval tf — to. For larger time intervals, a time-marching procedure
of Chapter 4 could be used, employing // — IQ as the time step.

Example 6.6

Terminal time weighting is very common in problems where two objects are desired
to be brought together in a specified final time, such as missile guidance to a
target, a rendezvous (or docking) of two spacecraft, or a rendezvous of an aircraft
and a tanker aircraft for refuelling. When posing the optimal guidance strategy for
such problems, usually the state variables are the relative distance between the two
objects, x\(t), and the relative velocity (also called the closure velocity), X2(t). At
some specified final time, r/, it is desired that the relative distance becomes zero,
i.e. x\(tf) = 0. Whereas in a rendezvous problem, it is also desired that the final
closure velocity also becomes zero, i.e. *2(//) = 0, such a condition is not imposed
on guiding a missile to its target. If x\ (tf) / 0, a miss is said to occur, and the miss
distance, x\(tf), is a measure of the success (or failure) of either the rendezvous or
the missile intercept. The linear, time-invariant state-equation for a missile guidance
or a rendezvous problem can be written in terms of the state variables, ATI (t ) and
X2(0> and single input, u(t} - which is the normal acceleration provided to the
object - with the following state coefficient matrices:

When we do not care how the missile (or spacecraft) moves before the intercept
(or rendezvous) occurs, we may not wish to assign any weightage to the tran-
sient response by choosing Q = 0, and R = 1 . In such cases, the matrix Riccati
equation can be solved analytically, and you may refer to Bryson and Ho [2] for
the resulting exact solutions. However, it is generally desired that the plant adheres
to certain limitations in its transient response, while proceeding from the initial
time to the final time, hence Q is appropriately chosen to be non-zero. Let us
consider a spacecraft docking (rendezvous) problem. The initial relative distance
and closure velocity between the two spacecraft are 100 m and —10 m/s, respec-
tively. It is desired to complete the rendezvous in 10 seconds, with the closure
velocity never exceeding a magnitude of 50 m/s, while requiring a maximum normal
acceleration input magnitude of less than 50 m/s2. The docking will be considered
successful if the final magnitudes of relative distance, x \ ( t f ) , and relative velocity,
X2(tf), are less than 0.15 m and 0.5 m/s, respectively. Since both relative distance,
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TERMINAL TIME WEIGHTING: SOLVING THE MATRIX RICCATI EQUATION 317

x\ (0, and closure velocity, X2(t), are required to be minimized at the terminal time,
the terminal time weighting matrix, V, should assign weightage to both the state
variables. The following choice of Q, R, and V is seen to meet the performance
requirements:

i o
0 0

V =
10 0
0 0

(6.87)

and the two-point boundary-value problem is solved using tpbvlti.m as follows:

»[u,X,t] = tpbvlti(A,B, [1 0; 0 0 ] ,3 , [10 0; 0 0] ,0,10,
[100 -10] ' ) ; <enter>

The calculated state variables, *i(0 and X2(t), and the input, u(t), are plotted in
Figure 6.12. Note that the performance objectives are met quite successfully. The
calculated values of x\(tf) and X2(t/) are not exactly zeros, but —0.1438 m and
0.3610 m/s, respectively; however, these are small enough to be acceptable.
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Figure 6.12 Closed-loop docking of spacecraft with terminal time weighted, optimal regulator

Example 6.7

Suppose it is desired to bring both normal acceleration, y\(t), and the pitch-rate,
y2(f), of the flexible bomber aircraft (Example 6.5) to zero in exactly 0.2 seconds,
after encountering a perturbation in the pitch-rate of 0.1 rad/s, regardless of the
maximum overshoot and settling time of the transient response. Since we do not care
what happens to the transient response, we can choose Q = 0. Then the choice of
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