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Kalman Filters

7.1 Stochastic Systems

We defined deterministic systems in Chapter 1 as those systems whose governing physical
laws are such that if the state of the system at some time (i.e. the initial condition) is
specified, then one can precisely predict the state at a later time. Most (if not all) natural
processes are non-deterministic Systems (i.e. systems that are not deterministic). Non-
deterministic systems can be divided into two categories: stochastic and random systems.
A stochastic (also called probabilistic) system has such governing physical laws that even
if the initial conditions are known precisely, it is impossible to determine the system’s
state at a later time. In other words, based upon the stochastic governing laws and the
initial conditions, one could only determine the probability of a state, rather than the state
itself. When we flip a perfect coin, we do not know if head or tail will come up; we
only know that both the possibilities have an equal probability of 50%. The disturbances
encountered by many physical systems — such as atmospheric turbulence and disturbance
due to an uneven ground — are produced by stochastic systems. A random system is one
which has no apparent governing physical laws. While it is a human endeavour to ascribe
physical laws to observed natural phenomena, some natural phenomena are so complex
that it is impossible to pin down the physical laws obeyed by them. The human brain
presently appears to be a random system. Environmental temperature and rainfall are
outputs of a random system. It is very difficult to practically distinguish between random
and stochastic systems. Also, frequently we are unable to practically distinguish between a
non-deterministic (stochastic or random) system, and a deterministic system whose future
state we cannot predict based upon an erroneous measurement of the initial condition. A
double pendulum (Figure 1.5) is a classic example of unpredictable, deterministic systems.
For all practical purposes, we will treat all unpredictable systems — deterministic or non-
deterministic — (stochastic or random) as stochastic systems, since we have to employ
the same statistical methods while studying such systems, regardless of the nature of their
physical governing laws. For the same reason, it is a common practice to use the words
random, stochastic, and unpredictable interchangeably. While we are unable to predict
the state of a random process, we can evolve a strategy to deal with such processes when
they affect a control system in the form of noise. Such a strategy has to be based on a
branch of mathematics dealing with unpredictable systems, called statistics.

Since the initial state, x(#y), of a stochastic system is insufficient to determine the
future state, x(z), we have to make an educated guess as to what the future state might
be, based upon a statistical analysis of many similar systems, and taking the average of
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324 KALMAN FILTERS

their future states at a given time, ¢. For example, if we want to know how a stray dog
would behave if offered a bone, we will offer N stray dogs N different bones, and record
the state variables of interest, such as intensity of the sound produced by each dog, the
forward acceleration, the angular position of the dog’s tail, and, perhaps, the intensity of
the dog’s bite, as functions of time. Suppose x; () is the recorded state-vector of the ith
dog. Then the mean state-vector is defined as follows:

N
Xm(1) = (1/N) Y xi(1) a.n

i=1

Note that x,,() is the state-vector we would expect after studying N similar stochastic
systems. Hence, it is also called the expected value of the state-vector, x(¢), and denoted by
Xm(t) = E[x(t)]. The expected value operator, E[-], has the following properties (which
are clear from Eq. (7.1)):

(a) Elrandom signal] = mean of the random signal.

(b) E[deterministic signal] = deterministic signal.

(©) E[xi(t) +x2(0)] = E[x:(1)] + E[x2(1)].

(d) E[Cx(1)] = CE[x(t)]; C = constant matrix.

(e) E[x(#)C] = E[x(®)]C; C = constant matrix.

f) E{x(t)y(®)] = E[x(t)]ly(t); x(¢) = random signal; y(t) = deterministic signal.
(g) Ely®)x(1)] = y@)E[x(2)); x(t) = random signal; y(t) = deterministic signal.

We can define another statistical quantity, namely a correlation matrix of the state-vector
as follows:

N
Ry(r, 1) = (1/N) ) _%i(Ox] (r) (7.2)

i=1

The correlation matrix, Rx(#,7), is a measure of a statistical property called correla-
tion among the different state variables, as well as between the same state variable at
two different times. For two scalar variables, x,(t) and x;(t), if the expected value of
x1()x2(7) 1s zero, i.e. E[x1(t)x2(t)] = 0, where 7 is different from ¢, then x;(¢) and x> (¢)
are said to be uncorrelated. Comparing Eqs. (7.1) and (7.2), it is clear that the correlation
matrix is the expected value of the matrix x; (£)x/ (), or R, (¢, T) = E[x; (£)x/ (r)]. When
t = 1, the correlation matrix, R, (z, 1) = E[x; (t)x,.T (1)1, is called the covariance matrix.
It is obvious that the covariance matrix, R, (7, ), is symmetric. If R.(z, T) is a diag-
onal matrix, it implies that all the state variables are uncorrelated, i.e. E[x;(t)x;(t)] =
0, where i # j. You are referred to a textbook on probability and statistics, such as
that by Papoulis [1], for further details on expected values, correlation and covariance
matrices.

There are special stochastic systems, called stationary systems, for which all the statis-
tical properties, such as the mean value, xn(?), and correlation matrix, Rx(¢. t), do not
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STOCHASTIC SYSTEMS 325

change with a translation in time, i.e. when time, ¢, is replaced by (¢ + ). Hence, for a
stationary system, Xy (t + 0) = Xz (1) = constant, and Ry(# + 6, 7 4+ 6) = R (z, 1) for all
values of 6. Expressing Ry (z, 7) = Ry (¢, t + o) where t = ¢ + «, we can show that for a
stationary system, Ry(t — «, 1) = Ry (¢, t + «), which implies that for a stationary system,
the correlation matrix is only a function of the time-shift, «, i.e. Re(t, + o) = Ry().
Many stochastic systems of interest are assumed to be stationary, which greatly simplifies
the statistical analysis of such systems.

The expected value, Xxp,(7), and the correlation matrix, Ry(f, v), are examples of
ensemble statistical properties, 1.€. properties of an ensemble (or group) of N samples.
Clearly, the accuracy by which the expected value, x,(f), approximates the actual state-
vector, X(¢), depends upon the number of samples, N. If N is increased, the accuracy is
improved. For a random system, an infinite number of samples are required for predicting
the state-vector, i.e. N = co. However, we can usually obtain good accuracy with a finite
(but large) number of samples. Of course, the samples must be taken in as many different
situations as possible. For example, if we confined our sample of stray dogs to our own
neighborhood, the accuracy of ensemble properties would suffer. Instead, we should pick
the dogs from many different parts of the town, and repeat our experiment at various
times of the day, month, and year. However, as illustrated by the stray dog example,
one has to go to great lengths merely to collect sufficient data for arriving at an accurate
ensemble average. Finding an ensemble average in some cases may even be impossible,
such as trying to calculate the expected value of annual rainfall in London — which would
require constructing N Londons and taking the ensemble average of the annual rainfall
recorded in all the Londons! However, we can measure annual rainfall in London for many
vears, and take the time average by dividing the total rainfall by the number of years.
Taking a time average is entirely different from taking the ensemble average, especially if
the system is non-stationary. However, there is a sub-class of stationary systems, called
ergodic systems, for which a time average is the same as an ensemble average. For those
stationary systems that are not ergodic, it is inaccurate to substitute a time average for the
ensemble average, but we still do so routinely because there is no other alternative (there
is only one London in the world). Hence, we will substitute time averaged statistics for
ensemble statistics of all stationary systems. For a stationary system, by taking the time
average, we can evaluate the mean, Xy, and the correlation matrix, Ry(t), over a large
time period, T — o0, as follows:

/2

Xm = limr_,,oo(l/T)/ x(t) dt (7.3)

7/2
T/2

1
Ry (1) = limf_,oc(l/T)/ x(O)x” (1 + 1) dt (7.4)
-7/2

Note that since the system is stationary, the mean value, X, is a constant, and the
correlation matrix, Ry(7), is only a function of the time-shift, . For frequency domain
analysis of stochastic systems, it is useful to define a power spectral density matrix, Sx(w).
as the Fourier transform of the correlation matrix, Ry(7), given by

Sy (@) = / Ry(t)e ' Tdr (7.5)

=00
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326 KALMAN FILTERS

where o is the frequency of excitation (i.e. the frequency of an oscillatory input applied
to the stochastic system). The power spectral density matrix, Sx(w), is a measure of how
the power of a random signal, x(z), varies with frequency, w. The Fourier transform of
the random signal, x(t), is given by

X(iw) = f x(r)e ' dt (7.6)

oc

It can be shown from Egs. (7.4)—(7.6) that
Sx(w) = X(iw)XT (~iw) (7.7)

The correlation matrix, Ry (7), can be obtained by calculating the inverse Fourier transform
of the power spectral density matrix, Sx(w), as follows:

Ri(1) = (1/27) f > Sy (w)e“Tdw (7.8)

Comparing Eqgs. (7.4) and (7.8), we find that at = 0, the correlation matrix becomes the
covariance matrix, given by

T/2 o0 .
R,(0) = limr_,w(l/T)f x(O)x” ()dr = (1/27r)/ Sy(w)e'"dw (7.9)
-T/2 -G
or
o .
/ Sx(w)e' T dw = 27 Xms (7.10)
—00
where Xns, called the mean-square value of x(t), is the following:
T/2
Xms = limT_,x(l/T)/ x(xT (1) dt (7.11)
-T2

Usually, the state-vector, x(¢), is available at discrete time points, rather than as a
continuous function of time. The discrete Fourier transform of a discrete time state-
vector, X(jAt), where At is the time step size and j = 1,2, ..., N, is calculated by the
following expression:

N
X(kAw) =Y x(jAne U=DE=D/IN (7.12)
j=1
where Aw = 27 /(N At) is the frequency step size. Similarly, the inverse discrete Fourier
transform can be calculated as follows:
N
X(jAD = (1/N) ) X (kAw)e?I=D-1/N (7.13)
j=1
When the discrete Fourier transform is used to calculate the power spectral density, the
result must be divided by N, the number of frequency points in X (kAw) as follows:

Sy(kAw) = X (ikAw)XT (—ikAw)/N (7.14)
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The discrete Fourier transform of a signal, x(¢), can be calculated by using the MATLAB
command for discrete Fourier transform, fft, as follows:

>>X = fft(x,n) <enter>

where X is the returned n-point discrete Fourier transform of x. If # is not specified, an N-
point Fourier transform is calculated, where N is the number of discrete time points in the
matrix X. X has as many rows as there are time points, and as many columns as there are
variables. Thus, each column of x is the Fourier transform of the corresponding column
of x. The inverse discrete Fourier transform is similarly calculated using the MATLAB
command ifft as follows:

>>x = ifft(X,n) <enter>

Example 7.1

Consider a scalar random signal, x(¢), which is generated using the MATLAB
command randn as follows:

>>t=0:0.1:10; randn(‘seed’,0); x=randn(size(t)); <enter>

The command randn generates a random number, according to a special random
process with a zero mean value, called normal(or Gaussian) probability distribution
[1]. The ‘seed’ of the random number generator, randn, is set to zero to initialize
the generating process to the value when MATLAB is started. The random signal,
x(t), is generated in time steps of 0.1 seconds, for 10 seconds — a total of 101 time
points. The full-order discrete Fourier transform of x(¢) is calculated as follows:

>>X=fft(x); <enter>

The discrete frequencies, w, at which the Fourier transform of x(z) is calculated are
calculated and stored in vector w as follows:

>>w = (0: length(X)-1)’*2*pi/(0.1*1length(X)); <enter>

The power spectral density, S, (®), of the discrete random signal, x(¢), is calculated
as follows:

>>8 = X.*conj(X)/length(X); <enter>

The correlation function, R, (7) is calculated by taking the inverse Fourier transform
of S(w) with the help of the MATLAB command ifft as follows:

>>Rx = ifft(S); <enter>
The scalar plots x(¢), | X ()|, Sc(®), and Rx () are shown in Figure 7.1. Note the

special shape of the S,(w) plot — it is symmetrical about the mid-point frequency
w = 51 Aw = 31.1 rad/s. This is a characteristic of the normal distribution.
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Figure 7.1 Random signal, x(#), its Fourier transform magnitude, |X(w)|, power spectral
density, S,(w), and correlation function, R.(t)

The mean value of x(r) can be obtained using the MATLAB command mean as
follows:

>>mean(x) <enter>
ans =
0.0708

which is very close to zero as expected (the mean value of x(t) will be exactly
zero only if the number of sample points, i.e. the length of x(¢), is infinity). The
covariance, R, (0) can be read from the plot of R,(t) to be approximately 0.9, or
obtained more precisely using the MATLAB command cov as follows:

>>cov(x) <enter>
ans =
0.9006

The mean-square of x(t), x5, can be calculated as follows:

>>xms = mean(x.*x) <enter>
ans =
0.8967

Note that x,,; is equal to the mean value of the power spectral density S,(w) plot,
calculated as follows:

>>mean(S) <enter>

ans =
0.8967
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