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7.3 White Noise, and White Noise Filters

In the previous section, we saw how random signals can be generated using a random
number generator, such as the MATLAB command randn, which generates random
numbers with a normal (or Gaussian) probability distribution. If we could theoretically
use a random number generator to generate an infinite set of random numbers with zero
mean value and a normal probability distribution, we would have a stationary random
signal with a constant power spectral density [1]. Such a theoretical random signal with
zero mean and a constant power spectral density is called a stationary white noise. A
white noise vector, w(f), has each element as a white noise, and can be regarded as the
state-vector of a stochastic system called a white noise process. For such a process, we can
write the mean value, wm = 0, and the power spectral density matrix, S(o>) = W, where
W is a constant matrix. Since the power spectral density of a white noise is a constant, it
follows from Eq. (7.9) that the covariance matrix of the white noise is a matrix with all
elements as .infinities, i.e. Rw(0) = oo. Also, from Eq. (7.8) we can write the following
expression for the correlation matrix of the white noise process (recall that the inverse
Laplace (or Fourier) transform of a constant is the constant multiplied by the unit impulse
function, 8(t)):

(7.18)

Equation (7.18) re-iterates that the covariance of white noise is infinite, i.e. Rw(0) = oo.
Note that the correlation matrix of white noise is zero, i.e. Rw(r) = 0, for r 7^ 0, which
implies that the white noise is uncorrelated in time (there is absolutely no correlation
between w(r) and w(r + r)). Hence, white noise can be regarded as perfectly random.
However, a physical process with constant power spectral density is unknown; all physical
processes have a power spectrum that tends to zero as u> —>• oo. All known physical
processes have a finite bandwidth, i.e. range of frequencies at which the process can
be excited (denoted by peaks in the power spectrum). The white noise, in contrast, has
an infinite bandwidth. Hence, the white noise process appears to be a figment of our
imagination. However, it is a useful figment of imagination, as we have seen in Chapters 5
and 6 that white noise can be used to approximate random disturbances while simulating
the response of control systems.

Let us see what happens if a linear, time-invariant system is placed in the path of a
white noise. Such a linear system, into which the white noise is input, would be called a
white noise filter. Since the input is a white noise, from the previous section we expect
that the output of the filter would be a random signal. What are the statistical properties
of such a random signal? We can write the following expression for the output, y(t), of a
linear system with transfer matrix, G(s), with a white noise input, w(f), using the matrix
form of the superposition integral of Eq. (2.120), as follows:

y(0 = I g ( r - r )w( r ) r f r (7.19)
J—oc

where g(/) is the impulse response matrix of the filter related to the transfer matrix, G(s).
by the inverse Laplace transform as follows:
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g(f) = / G(s)Gstds (7.20)
Jo

The lower limit of integration in Eq. (7.19) can be changed to zero if the white noise,
w(/), starts acting on the system at t = 0, and the system is causal, i.e. it starts producing
the output only after receiving the input, but not before that (most physical systems
are causal). Since the input white noise is a stationary process (with mean, wm = 0),
and the filter is time-invariant, we expect that the output, y ( t ) , should be the output of
a stationary process, and we can determine its mean value by taking time average as
follows:

772 f T / 2 _
g(r — r)w(r) dr \ dt

-7/2 J-T/2 U-oo

fT/2 fT/2 r ft

/ y(t)dt = \imT^OG(]/T) I /
J-T/2 J-T/2 U-

= / g(r- r ) | l imr->c»( l / r ) / w ( t ) d t ] d T = f
J-oo L J-T2 J J--T/2 J

(7.21)
Hence, the mean of the output of a linear system for a white noise input is zero. The
correlation matrix of the output signal, Ry(r) can be calculated as follows, using the
properties of the expected value operator, £"[•]:

Ry(r) = £[y(OyT(* + T)] = E\ f g(t- a)w(a) da • f wT(£)gT(f + r - ft) dft
\.J — CO J~ OC

ft+T -i

/ g(r - a)w(a)wT(^)gT(f + T - ft) da dft\
J-oo J

*t rt+r

~E\
' — oo J—oo

dft (7.22)
— OO J — OO

Using the fact that £[w(a)w(/3)] = Rw(a - ft) = W8(p - a), we can write

Ry<T> = / / 8(? - a)ViS(ft - oc)gT(t + r - ft), da dft
J — OO J —OO

/

t ft+T

g(t - cOWgT(? + r-a)da= I g(A)WgT(A + r) dX (7.23)
-OO J — OC

Since y(t) is the output of a stationary process, we can replace the upper limit of integra-
tion in Eq. (7.23) by oo, provided y(t) reaches a steady-state as r -> oo, i.e. the filter is
asymptotically stable. Therefore, the correlation matrix of the output of an asymptotically
stable system to the white noise can be written as follows:

/ -
(7.24)
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The power spectral density matrix, Sy(a)), for the output, y(r), can then be obtained by
taking the Fourier transform of the correlation matrix, Ry(r), as follows:

/

oo r /«oo -|
/ g(^)WgT(X + r) d X \ e~icaTdT (7.25)

-oo L''— oo J

Inverting the order of integration in Eq. (7.25), we can write

/

oo r /-oo -i
g(*)W / gT(A + r)e-imdT dX (7.26)

-oc \_J-oo J

The inner integral in Eq. (7.26) can be expressed as follows:

/

oo /*oc
gT(X + T)e~ia)Tdr = I gT($)e-iw(*-»d$ = e/wXGT(io>) (7.27)

-oc J —oo

where G(/o>) is the frequency response matrix of the filter, i.e. G(IOJ) = G(s = iay).
Substituting Eq. (7.27) into Eq. (7.26), we get the following expression for the power
spectral density matrix:

Sy(o>) = I I g(A)e'wXrfX 1 WGT(/o>) = G(-/o>)WGT(/o>) (7.28)

Equation (7.28) is an important result for the output of the white noise filter, and shows
that the filtered white noise does not have a constant power spectral density, but one
which depends upon the frequency response, G(/o>), of the filter.

Example 7.4

Let us determine the power spectral density of white noise after passing through the
first order low-pass filter of Eq. (7.15). The frequency response of this single-input,
single-output filter is the following:

G(i(o) = coQ/(ia) + WQ) (7.29)

Using Eq. (7.28), we can write the power spectral density as follows:

(a>2 + a>2
0) (7.30)

Equation (7.30) indicates that the spectrum of the white noise passing through this
filter is no longer flat, but begins to decay at a) = O)Q. For this reason, the filtered
white noise is called colored noise whose 'color' is indicated by the frequency,
o)Q. The correlation function is obtained by taking the inverse Fourier transform of
Eq. (7.30) as follows:

J?V(T) = (1/27T)

(r > 0) (7.31)
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Since for a stationary process, RV(—T) = Rv(r), we can write a general expression
for Ry(r) valid for all values of i as follows:

Ry(T) = (W«0/2) exp(-<oo|r|) (7.32)

Finally, the covariance matrix of the filtered white noise, Ry(0), is given by

flv(0) = (Wcov/2) (7.33)

Example 7.5

Atmospheric turbulence is a random process, which has been studied extensively. A
semi -empirical model of vertical gust velocity, x(t), caused by atmospheric turbu-
lence is the Dryden spectrum with the following expression for the power spectral
density:

Sx(a>) = a2T[\ + 3(<yr)2]/[l + (a)T)2]2 (7.34)

where a and T are constants. The correlation function, RX(T), of the Dryden spec-
trum can be calculated by taking the inverse Fourier transform of Sx (&>) according to
Eq. (7.8), either analytically or using MATLAB. It can be shown that the analytical
expression of Rx(t) is the following:

Rx(r) = a2(\ - 0.5|r|/r)e- |T|/r (7.35)

It is customary to express stochastic systems as filters of white noise. What
is the transfer function of a filter through which white noise must be passed to
get the filtered output as the Dryden turbulence? We can employ Eq. (7.28) for
the relationship between the power spectral density, Sx((o), and the filter transfer
function, G(s), which can be written for the scalar case as follows:

Sx(a)) = G(-ia))WG(i(D) = WG(-ia))G(ia)) (7.36)

Comparing Eqs. (7.34) and (7.36), we see that a factorization of the power spectral
density, Sx(co), given by

S.,(w) = a2T[\ - j3T(i(o)][l + ^/3T(iM)}/{[\ - T(ia>}}2[\ + T(ico)]2}

= WG(-ia))G(i(jo) (7.37)

leads to the following possibilities for G(s):

G(s) = a(T/W)l/2(\ ± ^3Ts)/(\ ± Ts)2 (7.38)

Since we want a stable filter (i.e. all poles of G(s) in the left-half plane), we should
have a '+' sign in the denominator of G(s) in Eq. (7.38). Also, we do not want a
zero in the right-half plane, because it leads to an undesirable phase plot of G(iaj),
called non-minimum phase. A stable transfer function with all zeros in the left-half
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338 KALMAN FILTERS

plane is called minimum phase. Hence, the following choice of G(s) would yield a
stable and minimum phase filter:

G(s) = a(T/ W01/2(l + 7375)7(1 4- Ts)2 (7.39)

Such a method of obtaining the filter's transfer function through a factorization of the
power spectral density is called spectral factorization, and is commonly employed
in deriving white noise filter representations of stochastic systems. For W = 1 and
a = 1, we can obtain a state-space representation of the filter with T = 1 s using
MATLAB as follows:

» T=1; n = sqrt(T)*[T*sqrt(3) 1]; d = conv([T 1] , [T 1]); sysfilt = tf
(n,d) <enter>

Transfer function:
1.732 s+1

s"2+2 s+1

A simulated response of the filter to white noise, representing the vertical gust
velocity, *(/), due to Dryden turbulence, can be obtained using MATLAB as follows:

»t=0:0.001:1; u = randn(size(t)); [x , t ,X] = lsim(sysfilt,u,t);
<enter>

Figure 7.6 shows the Dryden turbulence power spectrum, S((o)/a2 plotted against
coT, the Bode plots of the white noise filter transfer function, G(s), for T = 0.1,
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Figure 7.6 Power spectrum, white noise filter Bode plots, and simulated gust vertical velocity of
the Dryden turbulence model
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