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1, and 10 s, and simulated vertical gust velocity, x(¢), of the filtered white noise
with 7 = 0.1, 1, and 10 s. Note that the maximum value of S(w) is 1.125a* which
occurs near wT = 1. Note from the Bode plots of the filter with various T values,
that the white noise filter for Dryden turbulence acts as a low-pass filter with a cut-
off frequency, 1/T. Consequently, as T increases the filtered output (representing
turbulence) becomes smoother, because more high-frequency noise is blocked by
the filter.

7.4 The Kalman Filter

In the previous section we saw how we can represent stochastic systems by passing white
noise through linear systems. Such a representation of stochastic systems is useful for
dealing with a plant which we cannot model accurately using only a deterministic model,
because of the presence of modeling uncertainties (called process noise) and measurement
noise. A noisy plant is thus a stochastic system, which is modeled by passing white noise
through an appropriate linear system. Consider such a plant with the following linear,
time-varying state-space representation:

V() = A@)x@) + B®u(t) + F)v(r) (7.40)
y(t) = C()x(r) + D(HHu(r) + z(r) (7.41)

where v(t) is the process noise vector which may arise due to modeling errors such as
neglecting nonlinear or higher-frequency dynamics, and z(¢) is the measurement noise
vector. By assuming v(z) and z(¢) to be white noises, we will only be extending the
methodology of the previous section for a description of the stochastic plant. However,
since now we are dealing with a time-varying system as the plant, our definition of
white noise has to be modified. For a time-varying stochastic system, the output is a
non-stationary random signal. Hence, the random noises, v(¢) and z(¢), could in general
be non-stationary white noises. A non-stationary white noise can be obtained by passing
the stationary white noise through an amplifier with a time-varying gain. The correlation
matrices of non-stationary white noises, v(¢) and z(¢), can be expressed as follows:

Ry(t, 1) =V(®)é(r — 1) (7.42)
R.(t,v) =Z1)s(t — 7) (7.43)

where V(1) and Z(t) are the time-varying power spectral density matrices of v(r) and
z(1), respectively. Note that Eqs. (7.42) and (7.43) yield infinite covariance matrices,
Ry (z,t) and R, (¢, 1), respectively, which can be regarded as a characteristic of white
noise — stationary or non-stationary.

For designing a control system based on the stochastic plant, we cannot rely on full-state
feedback, because we cannot predict the state-vector, x(z), of the stochastic plant. There-
fore, an observer is required for estimating the state-vector, based upon a measurement of
the output, y(¢), given by Eq. (7.41) and a known input, u(z). Using the pole-placement
methods of Chapter 5 we can come up with an observer that has poles at desired loca-
tions. However, such an observer would not take into account the power spectra of the
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340 KALMAN FILTERS

process and measurement noise. Also, note the difficulty encountered in Chapter 5 for
designing observers for multi-input, multi-output plants, which limits the pole-placement
approach of observer design largely to single-output plants. To take into account the fact
that the measured output, y(¢), and state-vector of the plant, x(r), are random vectors,
we need an observer that estimates the state-vector based upon statistical (rather than
deterministic) description of the vecror output and plant state. Such an observer is the
Kalman Filter. Rather than being an ordinary observer of Chapter 5, the Kalman filter
is an optimal observer, which minimizes a statistical measure of the estimation error,
€o(t) = x(t) — X,o(t), where x,(t) is the estimated state-vector. The state-equation of the
Kalman filter is that of a time-varying observer (similar to Eq. (5.103)), and can be written
as follows:

xV (1) = A%, (t) + B()u(r) + L)[y(t) — C1)x(r) — D(t)u(t)] (7.44)

where L(#) is the gain matrix of the Kalman filter (also called the optimal observer gain
matrix). Being an optimal observer, the Kalman filter is a counterpart of the optimal
regulator of Chapter 6. However, while the optimal regulator minimizes an objective
function based on transient and steady-state response and control effort, the Kalman filter
minimizes the covariance of the estimation error, Re(t,t) = E [e.,(t)e,,T(t)]. Why is it
useful to minimize the covariance of estimation error? Recall that the state-vector, x(1),
is a random vector. The estimated state, X,(z), is based on the measurement of the output,
y(), for a finite time, say T, where ¢+ > T. However, a true statistical average (or mean)
of x(¢) would require measuring the output for an infinite time (i.e. taking infinite number
of samples), and then finding the expected value of x(#). Hence, the best estimate that the
Kalman filter could obtain for x(¢) is not the true mean, but a conditional mean, Xn(t),
based on only a finite time record of the output, y(¢), for 7 < ¢, written as follows:

Xm(?) = E[x(1) : y(T), T <1] (7.45)

There may be a deviation of the estimated state-vector, X,(7), from the conditional mean,
Xm(#), and we can write the estimated state-vector as follows:

Xo(1) = Xm (1) + AX(1) (7.46)

where Ax(¢) is the deviation from the conditional mean. The conditional covariance
matrix (i.e. the covariance matrix based on a finite record of the output) of the estimation
error is given by

Re(t, 1) = Eleo(n)eg (1) : y(T), T < 1] = E[{x(t) = Xo(OHX" (1) = X3 (0} : ¥(T). T <1]
Equation (7.47) can be simplified using Eq. (7.45) as follows: 7:47)

Re(t, 1) = E[X(DXT(1)] — Xo()X% (F) — XX (£)Xm (1) + Xo(1)X) (1) (7.48)
Finally, substituting Eq. (7.46) into Eq. (7.48) and simplifying, we get

R.(t, 1) = E[x()XT (1)) — Xm(1)XE, (1) + Ax(1) AXT (1) (7.49)
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From Eq. (7.49) it is clear that the best estimate of state-vector, implying Ax(t) =0
(i.e. Xo(1) = Xm(1)), would result in a minimization of the conditional covariance matrix,
R.(t, t). In other words, minimization of R (7, t) yields the optimal (i.e. the best) observer,
which is the Kalman filter.

Let us derive the expression for the gain matrix of the Kalman filter, L(¢), which mini-
mizes Re(z, 1), i.e. which makes the estimated state-vector equal to the conditional mean
vector. The optimal estimation error is thus ey(f) = x(¢) — Xy, (¢). Subtracting Eq. (7.44)
from Eq. (7.40) and substituting Eq. (7.41), we can write the following state-equation for
the optimal estimation error:

el (1) = [A(t) — L()C(t)]eo (1) + F(t)v(t) — L(1)z(t) (7.50)

Note that since v(z) and z(r) are white noises, the following vector is also a (non-
stationary) white noise
w(t) = F(t)v(r) — L(t)z(t) (7.51)

To find the covariance of the estimation error, we must somehow find an expression for the
solution of Eq. (7.50), which is a linear, time-varying system excited by a non-stationary
white noise, w(z). Let us write Egs. (7.50) and (7.51) as follows:

el (1) = Ag(1)eo(r) + W(7) (7.52)

where Ay (t) = [A(t) — L(¢)C(2)]. The solution to Eq. (7.52) for a given initial condition,
€,(1y), can be expressed as follows:

!
€o(1) = D(¢, t9)eq(tp) +f O, Ayw(r)dX (7.53)

fa

where (1, tp) is the state-transition matrix of the time-varying estimation error state-
equation, Eq. (7.52). Then the conditional covariance of estimation error can be written
as follows (dropping the notation y(7'), T < ¢, from the expected value for convenience):

Re(t. 1) = Efeo(t)eg ()] = E [® (1, to)eo(to)en (1) DT (2, 10)

+e0(m)/ D, ywh)dr + {f D(r, A)w(A) dk} €0 (fp)

Ly

t t
+f f o, HWwRW (E) DT, s)dws} (7.54)
o Jio
or, using the properties of the expected value operator, we can write

Re(t, 1) = ®(t, to) E[e,(to)eX (10) 19T (2, 1) + €, (to) [ (1, M) E[w(R)]d A

+ [/ (z, A)E[W(k)]d}n} €o(7o)

Iy

+/ / &, NE[wOWI(E)NDPT (1, &) drde (7.55)
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Since the expected value of white noise is zero, i.e. E[w(t)] =0, and the correlation
matrix of white noise is given by

E[wR)wT(E)] = WR)S(h — &) (7.56)

we can simplify Eq. (7.55) as follows:

Re(t,t)=<I>(t,tO)E[eo(to)eoT(tO)]d>T(t,t0)+f O, VWA ST (. )dr  (7.57)

o

If the initial estimation error, e,(%p), is also a random vector, we can write the initial
conditional covariance matrix as follows:

Re(to, 1) = Eleo(to)el (19)] (7.58)

Substituting Eq. (7.58) into Eq. (7.57), we can write

Re(t, 1) = ®(t, 1o)Re(1p, tg)¢T(r,to)+/ ¢(1,A)W(A)¢T(r.k)dx (7.59)

1o

Equation (7.59) describes how the optimal estimation error covariance evolves with time.
However, the state-transition matrix for the time varying system, ®(z, 1), is an unknown
quantity. Fortunately, we have already encountered an integral similar to that in Eq. (7.59)
while deriving the optimal regulator gain in Chapter 6. An equivalent integral for the
optimal control problem is given in Eq. (6.8) for M(z, t;). Comparing Egs. (7.59) and
(6.8) we find that QEL(L t) in Eq. (6.8) is replaced by ®(r, A) in Eq. (7.59), where t and
A are the variables of integration in Eqs. (6.8) and (7.59), respectively. Furthermore, the
matrix [Q(r) + KT(r)R(r)K(r)] in Eq. (6.8) is replaced by W(A) in Eq. (7.59). Also,
the direction of integration in time is opposite in Egs. (6.8) (+ — ¢/) and (7.59) (1o — ).
Thus, taking a cue from the similarity (and differences) between Egs. (6.8) and (7.59),
we can write a differential equation for Re(t,t) similar to that for M(z, t7), Eq. (6.14),
as follows:

dRe(t, 1)/dt = Ag(DRe(t, 1) + Re(t, DAT (1) + W(1) (7.60)

Note that Eq. (7.60) is an ordinary differential equation, rather than a partial differential
equation (Eq. (6.14)). Also, due to the fact that time progresses in a forward direction
(to — t) in Eq. (7.60), rather than in a backward direction (t; — t) in Eq. (6.14),
the negative sign on the left-hand side of Eq. (6.14) is replaced by a positive sign on
the left-hand side of Eq. (7.60). Equation (7.60) is called the covariance equation for the
Kalman filter, and must be solved with the initial condition given by Eq. (7.58). Note that
we do not need to know the state-transition matrix, ® (¢, fp), for solving for the optimal
covariance matrix. Equation (7.60) is the counterpart of the matrix Riccati equation for
the Kalman filter.

Substituting Egs. (7.51), (7.42) and (7.43) into Eq. (7.56), and assuming that the two
white noise signals, v(z) and z(t), are uncorrelated with each other, i.e. E [v(t)zT(r)] =
E[z(t)v'(1)] = 0, we can write the following expression relating W(t) to the spectral
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densities of the two white noise signals, V() and Z(r), as follows:
W) = FOVOFT (1) + L(OZLY (1) (7.61)

Substituting Eq. (7.61) into Eq. (7.60) and substituting Ae(t) = [A(t) — L()C(1)], we
can express the covariance equation as follows:

dR(t. 1)/dt = [A(r) — LOC@)IR(t, 1) + Re(r, 1)[A(1) — L(1)C1)]T
+FOV@OFT (1) + L) Z()L (1) (7.62)

Comparing Eq. (7.62) with Eq. (6.21) and using the steps similar to those of Section 6.1.2,
we can write the optimal Kalman filter gain, L°(1), as follows:

L°(1) = R(t, )CT()Z ™' (1) (7.63)

where RY(¢, 1) is the optimal covariance matrix satisfying the following matrix Riccati
equation:

dR®(t, 1) /dt = A(®RS(t, 1) + Re(t, HAT (1)
—R2(r. HCT(Z7 ' (H)COR(r, 1) + FOV(OF (1) (7.64)

We can derive a more general matrix Riccati equation for the Kalman filter when the two
noise signals are correlated with each other with the following cross-correlation matrix:

E[v(iH)z" ()] = W ()8t — 1) (7.65)

where W(t) is the cross-spectral density matrix between v(t) and z(¢). Then the optimal
Kalman filter gain can be shown to be given by

Lo(t) = [R2(t, CT (1) + F)W(HIZ™' (1) (7.66)

where R2(z, 1) is the optimal covariance matrix satisfying the following general matrix
Riccati equation:

dRC(t,1)/dt = Ag(ORC(t, 1) + R2(1, )AL (1)
— R, OHCT(OZ ' (TR, 1) + F(OVG(OFT (1) (7.67)
with
Ag(t) = A(t) —FOW()Z ' (1)C(r) (7.68)
Vo) = V(@) =W Z ' )W () (7.69)

For simplicity of notation, we will use L to denote the optimal gain matrix of the Kalman
filter, rather than L°(z).

The appearance of matrix Riccati equation for the Kalman filter problem is not
surprising, since the Kalman filter is an optimal observer. Hence, Kalman filter problem
is solved quite similarly to the optimal contro!l problem. Usually, we are interested in a
steady Kalman filter, i.e. the Kalman filter for which the covariance matrix converges to a
constant in the limit # — o0. Such a Kalman filter results naturally when the plant is time-
invariant and the noise signals are stationary white noises. In such a case, the estimation
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error would also be a stationary white noise with a constant optimal covariance matrix,
R?. For the steady-state time-varying problem with non-stationary white noise signals, or
the time-invariant problem with stationary white noise signals, the following algebraic
Riccati equation results for the optimal covariance matrix, R:

0 = AGR? + R°AT — R°CTZ-!CR? + FVGFT (7.70)

where the matrices on the right-hand side are either constant (time-invariant), or steady-
state values for the time-varying plant. The sufficient conditions for the existence of a
unique, positive definite solution to the algebraic Riccati equation (Eq. (7.70)) are the same
as those stated in Chapter 6: the system with state-dynamics matrix, A, and observation
matrix, C, is detectable, and the system with state-dynamics matrix, A, and controls coef-
ficient matrix, B = FV'/2  is stabilizable (V'/? denotes the matrix square-root of V, which
satisfies VI/2(V1/2)T = V). These sufficient conditions will be met if the system with state-
dynamics matrix, A, and observation matrix, C, is observable, V is a positive semi-definite
matrix, and Z is a positive definite matrix. We can solve the algebraic Riccati equation for
steady-state Kalman filter using either the MATLAB command are, or more specifically,
the specialized Kalman filter commands Ige or Ige2, which are called as follows:

>>[L,P,E] = 1lge(A,F,C,V,Z,Psi) <enter>

where A, F, C, are the plant’s state coefficient matrices, V is the process noise spectral
density matrix, Z is the measurement noise spectral density matrix, and Psi = W, the
cross-spectral density matrix of process and measurement noises. If Psi is not specified
(by having only the first four input arguments in Ige), it is assumed that ¥ =0. L
is the returned Kalman filter optimal gain, P = R?, the returned optimal (conditional)
covariance matrix of the estimation error, and E is a vector containing the eigenvalues
of the Kalman filter (i.e. the eigenvalues of A-LC). The command /ge2, is used in a
manner similar to lge, but utilizes a more numerically robust algorithm for solving the
algebraic Riccati equation than Ige. A third MATLAB command, Igew, is also available,
which solves a special Kalman filter problem in which the output equation is y(¢) =
C)x(t) +D()u(t) + G(t)v() + z(t), where v(¢) is the process noise that affects the
output through the coefficient matrix, G(¢), and is uncorrelated with the measurement
noise, z(t).

Example 7.6

Let us design a Kalman filter for the fighter aircraft of Example 5.13. It is assumed
that only the first two of the three state variables are measured. The state coefficient
matrices for the linear, time-invariant model are as follows:

—-1.7 50 260 —272 0.02 0.1
A= 022 —-14 -32 |; B= 010, F=| —-0.0035 0.004
0 0 -12 14 0 0

1 00
C_[O , 0], D=0 1.71)
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The third-order plant has a single input, two outputs and two process noise variables.
The process noise spectral density matrix for the bomber is assumed to be V = FTF,
while that for the measurement noise is, Z = 10CCT. Also, assume that the cross-
spectral density of process and measurement noise is zero, i.e. W = 0. Then the
Kalman filter gain is calculated using the MATLAB command Ige as follows:

>>A={-1.7 50 260; 0.22 -1.4 -32;0 0 -12};F=[0.02 0.1;-0.0035 0.004;0 01;
C=[1 00; 01 0]; <enter>

>>[L,P,E] = lqe(A,F,C,F'*F,10%*C*C’) <enter>
L =

3.5231 0.2445

0.2445 0.0170

0 0

35.2306 2.4450 0
2.4450 0.1697
0 0

o o

E =
-12.0000
-4.8700
-1.7700

The Kalman filter is thus stable with eigenvalues at A = —12, A = —4.87, and
A= —1.77. Let us simulate the Kalman filter estimation error with v(z) and z(z) &
generated using randn as follows:

>>randn(‘seed’,0); t=0:0.01:10; v = randn(size(t,2),2); z = randn(size
(t,2),2); w = F*v’-L*z’; <enter>

>>[e,X] = lsim(A-L*C,eye(3),eye(3),zeros(3,3),w’,t); <enter>

The simulated white noise, representing an element of v(¢) or z(z), and the simulated
estimation error, €,(t) = [eo(¢)eq2(t)eos(t)]”, are plotted in Figure 7.7.

Note that the third element of the estimation error vector, e, (t), is identically zero
(because the last row of F is zero), while the first two elements are much smoother |
and with smaller magnitudes than the noise. The first two elements of the estimation
error are random variables with zero mean values. How accurate is our simulated
estimation error? Not very accurate, because the noise vector we have simulated
does not have exactly the same power spectral density that we have assumed. In §
fact, the simulated white noise is far from being a perfect white noise, which we
can verify by calculating the covariance matrices and mean values of v(¢) and z(r),
as follows:

>>cov(v) <enter>

ans =
1.0621 -0.0307
-0.0307 1.0145
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Simulated white noise (an element of v(t) or z(t))

Time (s)
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Figure 7.7 Simulated white noise and estimation errors of the Kalman filter for a fighter aircraft

>>cov(z) <enter>

ans =
1.0229 0.0527 -0.0133
0.0527 0.8992 0.0131
-0.0133 0.0131 0.9467

>>mean(v) <enter>
ans =
-0.0139 -0.0047

>>mean(z) <enter>
ans =
-0.0125 0.0025 -0.0421

Recall that a white noise vector must have infinite covariance matrix and a zero
mean vector. The covariance of the simulated estimation error is the following:

>>cov(e) <enter>

ans =
0.0347 0.0024 0
0.0024 0.0002 0
0 0 0

Note that the simulated estimation error’s covariance is different from the optimal
covariance matrix, P, obtained as the solution to the algebraic Riccati equation of the
Kalman filter. However, the ratios between the elements of P are the same as those
between the elements of cov(e). Hence, the matrix P must be scaled by a scalar
constant to represent the covariance of estimation error. To reduce the difference
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between the covariance matrices of the simulated and optimal estimation error, we
should modify our assumptions of the power spectral densities, or simulate the white
noise more accurately using the random number generator, randn. Since the actual
noise will almost never be a white noise, there is no point in spending the time
to accurately model white noise better on a computer. Instead, we should fine tune
the Kalman filter gain by appropriately selecting the spectral densities V, Z, and V. &
After some trial and error, by selecting V = FTF, Z = 0.01CC”, and ¥ = 0, we

get the Kalman filter gain and optimal estimation error covariance as follows: ‘

>>[L,P,E] = lge(A,F,C,F’"*F,0.01*C*C’) <enter>

L =
3.5247 0.2446
0.2446 0.0170
0 0
P =
0.0352 0.0024 0
0.0024 0.0002 0
0 0 0
E =
-12.0000
-4.8708
-1.7709

and the simulated estimation error is re-calculated as

>>w = F*v’-L*z’;sysob=ss(A-L*C,eye(3),eye(3),zeros(3,3));[e,t,X] = lsim
: (sysob,w’,t); <enter>

with the simulated estimation error’s covariance matrix given by

>>cov{e) <enter>

ans =
0.0347 0.0024 0
0.0024 0.0002 0
0 0 0

which is the same as calculated previously, and quite close to the new optimal |
covariance, P. The new Kalman filter gain and eigenvalues are not changed by
much (indicating little change in the estimation error time response), but the scaling |
of the optimal covariance of the estimation error is now greatly improved. The mean }

estimation error vector, €,m, is calculated as follows: .

>> mean(e) <enter>

ans =

0.0305 0.0021 0
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which is quite close to zero vector, as desired. The accuracy of the mean value will,
of course, improve by taking more time points in the simulation, and in the limit
of infinite number of time points, the mean would become exactly zero.

The Kalman filter approach provides us with a procedure for designing observers for
multivariable plants. Such an observer is guaranteed to be optimal in the presence of
white noise signals. However, since white noise is rarely encountered, the power spectral
densities used for designing the Kalman filter can be treated as tuning parameters to arrive
at an observer for multivariable plants that has desirable properties, such as performance
and robustness. The linear Kalman filter can also be used to design observers for nonlinear
plants, by treating nonlinearities as process noise with appropriate power spectral density
matrix.

Example 7.7

Let us design a Kalman filter to estimate the states of a double-pendulum (Example
4.12, Figure 1.5). A choice of the state variables for this fourth order system
is x1(t) = 61(1), x2(t) = 62(), x3(r) = 6" (1); x4(r) = 65" (¢), which results in
nonlinear state-equations given by Eq. (4.93). The function M-file for evaluating
the time derivative of the state-vector, x\!)(¢), is called doub.m and is tabulated in
Table 4.7. Thus, M-file assumes a known input torque acting on the pendulum given
by u(t) = 0.01sin(5¢t)N — m. It is desired to design a linear Kalman filter based
on the known input, #(¢), and measurement of the angular position and angular
velocity of the mass, m, i.e. y(¢) = [6,(¢); 91“)(t)]T, with the following linearized
plant model:

2@ = x3(0)

x5 (1) = x4 (1)

x(1) = [magxa(t) — (my + ma)gx1 (1)1/(my Ly) (1.72)
x0(t) = —[gxa(t) + Lidx3(1)/dt]/Ly + u(t)/(mL3)

which results in the following linear state coefficient matrices for the plant:

B 0 0 1 0
Ao 0 0 0o 1]
T | —(mi +my)g/(mLy) mag/(mLy) 0 of
| (my +my)g/(mLy) —g(ma/my+1)/L; 0 0O
[~ 0
B = 0 j|
| —1/(myL3)

(1 0 0 O 0
c=[1 00 0] »=[0] o7
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The solution of the exact nonlinear state-equations of the plant with zero initial
condition, i.e. x(0) = 0, is obtained using the MATLAB Runge—Kutta solver ode45 &
as follows: .

>>[t,X] = ode45(@doub,[0 20],zeros(4,1)); <enter>

However, it is assumed that the state-vector, x(7), solved above, is unavailable |
for measurement, and only the output, y(t), can be measured, which is calcu- {
lated by

>C =[1000; 001 0]; y=C*X"; <enter>
The state coefficient matrices, A and B, of the linearized plant are calculated with §
my =1kg, my=2kg, Ly=1m, L, =2m, and g =9.8 m/s? (same values as |

those used in doub.m for the nonlinear plant) as follows:

>>mi=1;m2=2;L1=1;L2=2;9=9.8; A= [0 0 1 0; 000 1; -(mt+m2)*g/(m1*L1)
m2*g/(m1*L1) O O; (mi+m2)*g/(m1*L2) -g*(m2/mi+1)/L2 O O] <enter>

A =
0 0 1.0000 0
0 0 0 1.0000
-29.4000 19.6000 0 0
14.7000 -14.7000 0 0

>>B = [0 0 0 1/(m2*L2*L2)]’ <enter>

0

0

0
0.1250

Since nonlinearities appear as process noise for all the state variables of the
linear plant model, the process noise coefficient matrix is assumed to be an
identity matrix, i.e. F = 1. The linear Kalman filter is to be designed using the
spectral densities of process and measurement noise, V, Z, and ¥ such that the
exact state-vector, X(¢), is accurately estimated. After some trial and error, we
select V=10°1,Z = CCT, and ¥ =0, and calculate the Kalman filter gain as
follows:

>>[L,P,E]=1qe(A,eye(4),C,1e6*eye(4),C*C’) <enter>

L =
9.9989e+002 -1.3899e+001
1.5303e+001 1.0256e+003
-1.3899e+001 1.0202e+003
2.1698e+001 4.8473e+002
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Figure 7.8 Actual (simulated) state-vector, x(t) = [61(#); G2(1); 1V (1); 6" (], and esti-
mated state-vector, Xo(f) = [6o1 (#); O52(1); 9;:)(0; 0:,]2’(!)]7, with a linear Kalman filter for the
nonlinear dynamics of a double pendulum

P =

9.9989e+002 1.5303e+001
1.5303e+001 5.3371e+004

-1.3899e+001 1.0256e+003
2.1698e+001 2.6027e+004

-1.3899e+001 2.1698e+001
1.0256e+003 2.6027e+004
1.0202e+003 4.8473e+002
4.8473e+002 1.2818e+006

E =

-1.0000e+003+ 1.5202e+0011i
-1.0000e+003- 1.5202e+0011i
-1.8785e+001

-1.3039e+000
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