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Finally, we calculate the estimated state-vector, X, (), by solving the Kalman filter
state-equation (Eq. (7.44) with the known input, u(¢), and the measured output
vector, y(¢), using the SIMULINK block-diagram shown in Figure 7.8. The input,
u(t), is calculated in MATLAB work-space as follows, at the same time points
previously used for generating the state-vector, x(t), with ode45:

>>y = 0.01*sin(5*t’); <enter>

The actual (i.e. generated by solving nonlinear equations through ode45) and esti-
mated (SIMULINK) state variables are compared in Figure 7.8. Note that the state
variables 6,(¢) and 01(1)0) are almost exactly estimated, as expected, because these

state variables are directly measured. The estimation errors for 6,(¢) and 02“)(r) are
appreciable, but reasonable, since we are trying to estimate a nonlinear plant by a
linear Kalman filter.

7.5 Optimal (Linear, Quadratic, Gaussian)
Compensators

In Chapter 5, we had used the separation principle to separately design a regulator and
an observer using pole-placement, and put them together to form a compensator for the
plant whose state-vector was unmeasurable. In Chapter 6, we presented optimal control
techniques for designing linear regulators for multi-input plants that minimized a quadratic
objective function, which included transient, terminal, and control penalties. In the present
chapter, we have introduced the Kalman filter, which is an optimal observer for multi-
output plants in the presence of process and measurement noise, modeled as white noises.
Therefore, using a separation principle similar to that of Chapter 5, we can combine the
optimal regulator of Chapter 6 with the optimal observer (the Kalman filter), and end
up with an optimal compensator for multivariable plants. Since the optimal compensator
is based upon a linear plant, a quadratic objective function, and an assumption of white
noise that has a normal, or Gaussian, probability distribution, the optimal compensator
is popularly called the Linear, Quadratic, Gaussian (or LQG) compensator. In short, the
optimal compensator design process is the following:

(a) Design an optimal regulator for a linear plant assuming full-state feedback (i.e.
assuming all the state variables are available for measurement) and a quadratic objec-
tive function (such as that given by Eq. (6.3)). The regulator is designed to generate
a control input, u(z), based upon the measured state-vector, x(z).

(b) Design a Kalman filter for the plant assuming a known control input, u(z), a measured
output, y(7), and white noises, v(¢t) and z(¢), with known power spectral densities.
The Kalman filter is designed to provide an optimal estimate of the state-vector, X,(1).

(c) Combine the separately designed optimal regulator and Kalman filter into an optimal
compensator, which generates the input vector, u(¢), based upon the estimated
state-vector, X,(¢), rather than the actual state-vector, x(t), and the measured output
vector, y(?).
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352 KALMAN FILTERS

Since the optimal regulator and Kalman filter are designed separately, they can be
selected to have desirable properties that are independent of one another. The closed-
loop eigenvalues consist of the regulator eigenvalues and the Kalman filter eigen-
values, as seen in Chapter 5. The block diagram and state-equations for the closed-
loop system with optimal compensator are the same as those for the pole-placement
compensator designed in Chapter 5, except that now the plant contains process and
measurement noise. The closed-loop system’s performance can be obtained as desired
by suitably selecting the optimal regulator’s weighting matrices, Q and R, and the
Kalman filter’s spectral noise densities, V, Z, and ¥. Hence, the matrices Q, R,
V, Z, and ¥ are the design parameters for the closed-loop system with an optimal
compensator.

A state-space realization of the optimal compensator for regulating a noisy plant with
state-space representation of Eqs. (7.40) and (7.41) is given by the following state and
output equations:

%" (t) = (A = BK = LC + LDK)x,(t) + Ly(¢) (7.74)
u(t) = —Kx, (1) (7.75)

where K and L are the optimal regulator and Kalman filter gain matrices, respectively.
For a corresponding optimal tracking system, the state and output equations derived in
Section 5.4.1 should be used with the understanding that K is the optimal feedback gain
matrix and L is the optimal Kalman filter gain matrix.

Using MATLAB (CST), we can construct a state-space model of the regulating closed-
loop system, sysCL, as follows:

>>sysp=ss(A,B,C,D); sysc=ss(A-B*K-L*C+L*D*K,L,K,zeros(size(D’))); <enter>

>>sysCL=feedback(sysp,sysc) <enter>

where sysp is the state-space model of the plant, and sysc is the state-space model
of the LQG compensator. The resulting closed-loop system’s state-vector is XcL(¢t) =
[x7 (1); X, T (t)]7. Alternatively, MATLAB (CST) provides a readymade command reg to
construct a state-space model of the optimal compensator, given a state-space model of
the plant, sysp, the optimal regulator feedback gain matrix, K, and the Kalman filter gain
matrix, L. This command is used as follows:

>>sysc= reg(sysp,K,L) <enter>

where sysc is the state-space model of the compensator. To find the state-space repre-
sentation of the closed-loop system, sysCL, the command reg should be followed by the
command feedback as shown above.

Example 7.8

Let us design an optimal compensator for the flexible bomber aircraft (Examples 4.7,
6.1, 6.5, 6.7), with the process noise coefficient matrix, F = B. Recall that the
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sixth order, two input system is described by a linear, time-invariant, state-space
representation given by Eq. (4.71). The inputs are the desired elevator deflection
(rad.), u, (¢), and the desired canard deflection (rad.), u>(¢), while the outputs are the
normal acceleration (m/s?), y;(t), and the pitch-rate (rad./s), y(¢). In Example 6.1,
we designed an optimal regulator for this plant to achieve a maximum overshoot of
less than &2 m/s? in the normal-acceleration, and less than £0.03 rad/s in pitch-rate,
and a settling time less than 5 s, while requiring elevator and canard deflections not
exceeding +0.1 rad. (5.73°), if the initial condition is 0.1 rad/s perturbation in the
pitch-rate, i.e. x(0) = [0; 0.1; 0; 0; 0; 0]T. This was achieved with Q = 0.01I and
R =1, resulting in the following optimal feedback gain matrix:

K= 1.0780 —0.16677 —0.046948 —0.075618 0.59823 0.35302
T 13785  0.34502 —0.013144 -—-0.065260 0.47069 0.30941 |’

(7.76)
and the following eigenvalues of the regulator (i.e. eigenvalues of A-BK):

>>eig(A-B*K) <enter>

ans =

-7.8748e+001+ 5.0625e+0011
-7.8748e+001- 5.0625e+0011
-9.1803e+001

-1.1602e+000+ 1.7328e+0001
-1.1602e+000- 1.7328e+0001
-1.0560e+000

Note that the dominant regulator pole is at s = —1.056, which determines the speed
of response of the full-state feedback control system. Since the closed-loop eigen-
values of the compensated system are the eigenvalues of the regulator and the
eigenvalues of the Kalman filter, if we wish to achieve the same performance in
the compensated system as the full-state feedback system, ideally we must select a
Kalman filter such that the Kalman filter eigenvalues do not dominate the closed- §
loop system, i.e. they should not be closer to the imaginary axis than the regulator
eigenvalues. As the Kalman filter does not require a control input, its eigenvalues
can be pushed deeper into the left-half plane without causing concern of large
required control effort (as in the case of the regulator). In other words, the Kalman
filter can have faster dynamics than the regulator, which is achieved free of cost.
However, as we will see in the present example, it is not always possible to push
all the Kalman filter poles deeper into the left-half plane than the regulator poles
by varying the noise spectral densities of the Kalman filter. In such cases, a judi-
cious choice of Kalman filter spectral densities would yield the best recovery of the
full-state feedback dynamics.

To design the Kalman filter to recover the full-state feedback performance of
Example 6.1, the process noise spectral density matrix for the bomber is selected
after some trial and error to be V = 0.0007BTB, while the spectral density matrix of
the measurement noise is Z = CCT. We also assume that the process and measure-
ment noises are uncorrelated, i.e. ¥ = 0. Then the Kalman filter gain is calculated
using the MATLAB command Ige as follows: £
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>>[L,P,E] = 1qe(A,B,C,0.0007*B’*B,C*C’) <enter>
L =

-1.8370e-005 5.1824e-001

9.8532e-004 7.0924e+000

-1.5055e-001 -2.6107e+001
-3.1291e-002 -6.7694e+001
-3.0779e-002 -1.0403e+001
-3.3715e-002 1.7954e-001

P =
1.2307e+000 5.2093e-001 -3.9401e+001 5.5461e+001 -1.8815e-001 2.7655e-002

5.2093e-001 6.9482e+000 -4.0617e+000 -6.3112e+001 -5.8958e+000 5.1163e+000
-3.9401e+001 -4.0617e+000 2.8063e+004 4.7549e+004 -2.7418e+002 -2.3069e+002
5.5461e+001 -6.3112e+001 4.7549e+004 6.0281e+005 -1.1015e+003 -1.7972e+003
-1.8815e-001 -5.8958e+000 -2.7418e+002 -1.1015e+003 1.2093e+002 -2.4702e+001
2.7655e-002 5.1163e+000 -2.3069e+002 -1.7972e+003 -2.4702e+001 3.2603e+002

E =

-1.4700e+002

-8.9112e+001

-7.9327e+000

-1.9548e+000+ 4.1212e+0001
-1.9548e+000- 4.1212e+000i
-5.6453¢-001

Note that the Kalman filter’s dominant pole is at s = —0.56453, which is closer
to the imaginary axis than the dominant regulator pole. Thus, the two closed-loop
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Figure 7.9 Closed-loop system’s initial response and control inputs for the flexible bomber with
optimal (LQG) compensator
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poles closest to the imaginary axis are the dominant pole the Kalman filter and that §
of the optimal regulator, and the closed-loop response’s speed and overshoots are
largely determined by these two poles. We can construct a state-space model of the §
closed-loop system as follows: .

>>sysp=ss(A,B,C,D); sysc=ss(A-B*K-L*C+L*D*K,L,K,zeros(size (D’)));
<enter>

>>gysCL=feedback(sysp,sysc) <enter>

You may confirm that the closed-loop eigenvalues are indeed the eigenvalues of |
the regulator and the Kalman filter using damp(sysCL). The initial response of
the closed-loop system to x(0) = [0; 0.1; 0; 0; 0; 0]” and the required control input
vector are calculated as follows:

>>[y,t,X}=initial(sysCL,[0 0.1 zeros(1,10)]’); u=-K* X(:,7:12)’; <enter> @&

The closed-loop responses, y;(t) and y,(z), are compared to their corresponding
values for the full-state feedback control system (Example 6.1) in Figure 7.9.
Figure 7.9 also contains the plots of the required control inputs, u;(z) and uy(?).
Note that the speed of the response, indicated by the settling time of less than five
seconds, maximum overshoots, and control input magnitudes are all quite similar
to those of the full-state feedback system. This is the best recovery of the full-state
feedback performance obtained by varying the Kalman filter’s process noise spectral
density scaling parameter, p, where V = pBTB.

In Example 7.8, we saw how the full-state feedback control system’s performance
can be recovered by properly designing a Kalman filter to estimate the state-vector
in the compensated system. In other words, the Kalman filter part of the optimal
(LQG) compensator can be designed to yield approximately the same performance as
that of the full-state feedback regulator. Now let us examine the robustness of the
designed LQG compensated closed-loop system with respect to measurement noise
in comparison with the full-state feedback system of Example 6.1. Such a compar-
ison is valid, because both control systems use the same feedback gain matrix, K.
A SIMULINK block-diagram and the simulated initial response of the compensated
closed-loop system are shown in Figure 7.10. The same white noise intensity (power
parameter of 107%) in the pitch-rate channel is used as in Example 6.1. Comparing
Figure 7.10 with Figure 6.3, we observe that the normal acceleration and pitch-rate
fluctuations are about half the magnitudes and smaller in frequency than those seen
in Figure 6.3. This indicates that the LQG compensated system is more robust with
respect to measurement noise than the full-state feedback system of the same regulator
gain matrix, K.

We have thus far confined our attention to white noise model of disturbances. How
robust would an LQG compensator be to actual parameter variations and noise which is
not white? This is a crucial question, which is answered in the next section.
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