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Figure 7.10 Simulated inifial response of the flexible bomber with an optimal (LQG) compensator
and measurement noise in the pitch-rate channel

7.6 Robust Multivariable LQG Control: Loop Transfer
Recovery

In Chapter 2, we observed that in principle, the closed-loop systems are less sensitive (or

more robust) to variations in the mathematical model of the plant (called process noise

and measurement noise in Section 7.5), when compared to the corresponding open-loop

systems. It was also observed that the robustness of a single-input, single-output feedback
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Figure 7.11 A multivariable feedback control system with compensator transfer matrix, H(s), plant
transfer matrix, G(s), process noise, p(s), and measurement noise, m(s)

control system is related to the return difference, 1 + G(s)H(s), where G(s) and H(s)
are the transfer functions of the plant and controller, respectively. The larger the return
difference of the feedback loop, the greater will be the robustness when compared to the
corresponding open-loop system.

Consider a linear, time-invariant, multivariable feedback control system with the block-
diagram shown in Figure 7.11. The control system consists of a feedback controller with
transfer matrix, H(s), and a plant with transfer matrix, G(s), with desired output, Y4(s).
The process noise, p(s), and measurement noise, m(s), are present in the control system
as shown. Using Figure 7.11, the output, Y(s), can be expressed as follows:

Y(s) = [T+ G(s)H(s)]™'p(s) — [T — {1+ G()H(s)} ™' Im(s)
+{I— [T+ G(s)H(s)] '} Yu(s) (7.77)

while the control input, U(s), can be expressed as

U(s) = [T+ H(s)G(s)] 7' H(s)Ya(s) — [+ H(s)G(s)] " H(s)p(s)
~ [[+H(s)G(s)] " H(s)m(s) (7.78)

From Eqgs. (7.77) and (7.78), it is clear that the sensitivity of the output with respect
to process and measurement noise depends upon the matrix [I4 G(s)H(s)]™!, while
the sensitivity of the input to process and measurement noise depends upon the matrix
[I+ H(s)G(s)]~'. The larger the elements of these two matrices, the larger will be the
sensitivity of the output and input to process and measurement noise. Since robustness is
inversely proportional to sensitivity, we can extend the analogy to multivariable systems by
saying that the robustness of the output is measured by the matrix [I + G(s)H(s)], called
the return-difference matrix at the output, and the robustness of the input is measured by
the matrix [I 4+ H(s)G(s)], called the return difference matrix at the plant input. Therefore,
for multivariable control-systems, there are two return difference matrices to be consid-
ered: the return difference at the output, [I+ G(s)H(s)], and that at the plant’s input,
[X 4+ H(s)G(s)]. Alternatively, we can define the return ratio matrices at the plant’s output
and input, as G(s)H(s) and H(s)G(s), respectively, and measure robustness properties in
terms of the return ratios rather than the return differences.
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Continuing our analogy with single-input, single-output systems, we would like to
assign a scalar measure to robustness, rather than deal with the two return-difference (or
return ratio) matrices. We can define a matrix norm (introduced in Chapter 4) to assign a
scalar measure to a matrix. For a complex matrix, M, with n rows and m columns, one
such norm is the spectral (or Hilbert) norm, given by

”M”s = Omax (7.719)

where o is the positive square-root of the maximum eigenvalue of the matrix MHM if
n > m, or of the matrix MMM if n < m. Here MY denotes the Hermitian of M defined as
the transpose of the complex conjugate of M. In MATLAB, the Hermitian of a complex
matrix, M, is calculated by M’, i.e. the same command as used for evaluating the transpose
of real matrices. All positive square-roots of the eigenvalues of MM if n > m (or MMH
if n < m) are called the singular values of M, and are denoted by o}, k = 1, 2, .., n, where
n is the size of M. The largest among oy is denoted by oy« and the smallest among o}
is denoted by opp. If M varies with frequency, then each singular value also varies with
frequency.

A useful algorithm for calculating singular values of a complex matrix, M, of n rows
and m columns is the singular value decomposition, which expresses M as follows:

M = USVH (7.80)

where U and V are complex matrices with the property UYU =T and VAV =1, and S is
a real matrix containing the singular values of M as the diagonal elements of a square
sub-matrix of size (n x n) or (m x m), whichever is smaller. MATLAB also provides
the function svd for computing the singular values by singular value decomposition. and
is used as follows:

>>[U,S,V] = svd(M) <enter>

Example 7.9
Find the singular values of the following matrix:

L4i 242 3+4i
1—i 2-2i 3—5i
M=1"5  44i 1+2 (7.81)

7—1 2 34 3i

Using the MATLAB command svd, we get the matrices U, S, V of the singular
value decomposition (Eq. (7.80)) as follows:

>>[U,§,V] = svd(M) <enter>

U=
0.2945+0.06041i 0.4008-0.2157i -0.0626-0.2319i -0.5112-0.6192i
0.0836-0.4294i -0.0220-0.7052i 0.2569+0.1456i 0.4269-0.2036i1
0.5256+0.04311i -0.3392-0.0455i -0.4622-0.53461i 0.3230+0.0309i
0.6620-0.04251 -0.3236+0.27071 0.5302+0.27281 -0.1615-0.01541
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] 5.5662
0 .2218
0

oMM OO

vV =
0.6739 -0.6043 0.4251
0.4292-0.13181 -0.0562-0.35731 -0.7604-0.29901
0.4793-0.33851 0.6930-0.15401 0.2254+0.31761

Hence, the singular values of M are the diagonal elements of the (3 x 3) sub- &
B matrix of S, ie. oy(M) = 2.2218, 02(M) = 5.5662, and o3(M) = 2.1277, with §
the largest singular value, oy (M) = 12.1277 and the smallest singular value,
Omin(M) = 2.2218. Alternatively, we can directly use their definition to calculate
the singular values as follows:

>>gigma= sqrt(eig(M’*M)) <enter>

sigma =
12.1277+0.00001
5.5662+0.00001
2.2218+0.00001

The singular values help us analyze the properties of a multivariable feedback (called
a multi-loop) system in a manner quite similar to a single-input, single-output feed-
back (called a single-loop) system. For analyzing robustness, we can treat the largest
and smallest singular values of a return difference (or return ratio) matrix as providing
the upper and lower bounds on the scalar return difference (or return ratio) of an
equivalent single-loop system. For example, to maximize robustness with respect to the
process noise, it is clear from Eq. (7.77) that we should minimize the singular values of
the sensitivity matrix, [1 4+ G(s)H(s)]~', which implies minimizing the largest singular
value, omax[{I + G(s)H(s)} '], or maximizing the singular values of the return differ-
ence matrix at the output, i.e. maximizing omin[l + G(s)H(s)]. The latter requirement is
equivalent to maximizing the smallest singular value of the return ratio at the output,
ominlG(s)H(s)]. Similarly, minimizing the sensitivity to the measurement noise requires
minimizing the largest singular value of the matrix [I — {I + G(s)H(s)}"!], which is
equivalent to minimizing the largest singular value of the return ratio at the output,
omax[G(s)H(s)]. On the other hand, tracking a desired output requires from Eq. (7.77)
that the sensitivity to Y4(s) be maximized, which requires maximizing opin[I — {1+
G(5)H(s)}~'], which is equivalent to maximizing oyin[G(s)H(s)]. Also, it is clear from
Eq. (7.77) and the relationship U(s) = H(s)Y(s) that optimal control (i.e. minimization
of control input magnitudes) requires minimization of Oya[H(s){I + G(s)H(s)}™'], or
alternatively, a minimization of omax[H(s)]. In summary, the following conditions on the
singular values of the return ratio at output result from robustness, optimal control and
tracking requirements:
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(a) For robusmess with respect to the process noise, omin[G(sYH(s)] should be maximized.

(b) For robustness with respect to the measurement noise, omax[G(s)H(s)] should be
minimized.
(c) For optimal control, omax[H(s)] should be minimized.

(d) For tracking a changing desired output, 0,,in[G(s)H(s)] should be maximized.

Clearly, the second requirement conflicts with the first and the fourth. Also,
since Onmax[G(s)H(5)] < Omax[G(5)]lomax[H(s)] (a property of scalar norms), the third
requirement is in conflict with the first and the fourth. However, since measurement noise
usually has a predominantly high-frequency content (i.e. more peaks in the power spectrum
at high frequencies), we achieve a compromise by minimizing 0y;x[G(s)H(s)] (and
omax[H(s)]) at high frequencies, and maximizing oin[G(s)H(s)] at low frequencies. In
this manner, good robustness properties, optimal control, and tracking system performance
can be obtained throughout a given frequency range.

The singular values of the return difference matrix at the output in the frequency
domain, o[l + G(iw)H(iw)], can be used to estimate the gain and phase margins (see
Chapter 2) of a multivariable system. One can make singular value plots against frequency,
w, in a similar manner as the Bode gain plots. The way in which multivariable gain and
phase margins are defined with respect to the singular values is as follows: take the
smallest singular value, op,, of all the singular values of the return difference matrix at
the output, and find a real constant, a, such that o [I + G(iw)] = a for all frequencies,
w, in the frequency range of interest. Then the gain and phase margins can be defined as
follows:

Gain margin = 1/(1 £ a) (7.82)
Phase margin = £2 sin"!(a/2) (7.83)

Example 7.10

Figure 7.12 shows the singular values of the rotating flexible spacecraft of
Example 6.2. We observe that the smallest singular value reaches a minimum of
—70 dB in the frequency range 0.01-10,000 rad/s at frequency 0.01 rad/s. Hence,
a = 1077920 = 3,16 x 10~*. Therefore, the gain margins are 1/(1 + a) = 0.9997
and 1/(1 — a) = 1.0003, and phase margins are +0.0181° (which are quite small').
These margins are quite conservative, because they allow for simultaneous gain
and phase variations of all the controller transfer functions. The present analysis
indicates that the control system for the spacecraft cannot tolerate an appreciable
variation in the phase of the return difference matrix before its eigenvalue cross
into the right-half s-plane. However, the spacecraft is already unstable due to
double eigenvalues at s =0 (see Example 6.2), which the classical measures
of gain and phase margins do not indicate (recall from Chapter 2 that gain
and phase margins only indicate poles crossing over into right-half s-plane).
Hence, gain and phase margins have limited utility for indicating closed-loop
robustness.
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Figure 7.12 Singular value plot of the return difference matrix [I + G(s)H(s)] of the rotating
spacecraft

For designing a control system in which the input vector is the least sensitive to process
and measurement noise, we can derive appropriate conditions on the singular values of
the return ratio at the plant’s input, H(s)G(s), by considering Eq. (7.78) as follows:

(a) For robustness with respect to the process noise, oyin[H(s)G(s)] should be maximized.

(b) For robustness with respect to the measurement noise, oyin[H(s)G(s)] should be
maximized.

Thus, there is no conflict in achieving the robustness of the plant’s input to process and
measurement noise. However, Eq. (7.78) indicates that for tracking a changing desired
output, omax [H(s)G(s)] should be minimum, which conflicts with the robustness require-
ment. This conflict can again be resolved by selecting different frequency ranges for
maximizing and minimizing the singular values.

The adjustment of the singular values of return ratio matrices to achieve desired
closed-loop robustness and performance is called loop shaping. This term is derived
from single-loop systems where scalar return ratios of a loop are to be adjusted. For
compensated systems based on an observer (i.e. the Kalman filter), generally there is
a loss of robustness, when compared to full-state feedback control systems. To recover
the robustness properties associated with full-state feedback, the Kalman filter must be
designed such that the sensitivity of the plant’s input to process and measurement noise
is minimized. As seen above, this requires that the smallest singular value of the return
ratio at plant’s input, omin [H(s)G(s)], should be maximized. Theoretically, this maximum
value of omixs[H(s)G(s)] should be equal to that of the return ratio at the plant’s input
with full-state feedback. Such a process of designing a Kalman filter based compen-
sator to recover the robustness of full-state feedback is called loop transfer recovery
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(LTR). Optimal compensators designed with loop transfer recovery are called LQG/LTR
compensators. The loop transfer recovery can either be conducted at the plant’s the input,
as described below, or at the plant’s output. The design of optimal (LQG) compensators
for loop transfer recovery at the plant’s input can be stated as follows:

1. Design a full-state feedback optimal regulator by selecting Q and R matrices such
that the desired performance objectives are met, and the singular values of the return
ratio at the plant’s input are maximized. With full-state feedback, the return ratio at
the plant’s input is H(s)G(s) = —K(sI — A)~'B, where A, B are the plant’s state
coefficient matrices and K is the full-state feedback regulator gain matrix.

2. Design a Kalman filter by selecting the noise coefficient matrix, F, and the white noise
spectral densities, V, Z, and W, such that the singular values of the return ratio at
the plant’s input, H(s)G(s), approach the corresponding singular values with full-state
feedback. Hence, F, V, Z, and ¥ are treated as design parameters of the Kalman
filter to achieve full-state feedback return ratio at the plant’s input, rather than actual
parameters of process and measurement (white) noises.

The compensated system’s return ratio matrix at plant’s input can be obtained by taking
the Laplace transform of Eqgs. (7.74) and (7.75), and combining the results as follows:

U(s) = ~K(GI — ALY (s) (7.84)

where A, = (A — BK — LC 4+ LDK) is the compensator’s state-dynamics matrix, L is
the Kalman filter’s gain matrix, and Y(s) is the plant’s output, written as follows:

Y(s) = [C(sI — A)~'B + DJU(s) (7.85)
Substituting Eq. (7.85) into Eq. (7.84), we get the following expression for U(s):
UGs) = —K(I — A)"'L[C(sI — A)"'B + D]U(s) (7.86)

Note that the return ratio matrix at the plant’s input is the matrix by which U(s) gets
pre-multiplied in passing around the feedback loop and returning to itself, i.e. U(s) =
H(s)G(s) in Figure 7.11 if all other inputs to the control system, Y4(s), p(s), m(s), are
zero. Hence, the return ratio at the compensated plant’s input is

H(s)G(s) = —K(sI — A.)"'LIC(sI — A)"'B + D] (7.87)

There is no unique set of Kalman filter design parameters F, V, Z, and W to achieve
loop transfer recovery. Specifically, if the plant is square (i.e. it has equal number of
outputs and inputs) and minimum-phase (i.e. the plant’s transfer matrix has no zeros
in the right-half plane), then by selecting the noise coefficient matrix of the plant as
F = B, the cross-spectral density as W = 0, the measurement noise spectral density as
Z =1, and the process noise spectral density as V =V, + pl, where p is a scaling
parameter, it can be shown from the Kalman filter equations that in the limit p — oo, the
compensated system’s return ratio, given by Eq. (7.87), converges to —K(sI — A)~'B. the
return ratio of the full-state feedback system at the plant input. In most cases. better loop
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transfer recovery can be obtained by choosing Z = CCT and V = pB"B, and making p
large. However, making p extremely large reduces the roll-off of the closed-loop transfer
function at high frequencies, which is undesirable. Hence, instead of making p very large
to achieve perfect loop transfer recovery at all frequencies, we should choose a value of
p which is sufficiently large to approximately recover the return ratio over a given range
of frequencies.

MATLAB’s Robust Control Toolbox [3] provides the command sigma to calculate
the singular values of a transfer matrix, G(s = iw), as a function of frequency, w. as
follows:

>>[sv,w] = sigma(sys) <enter>

where sys is an LTI object of G(s) = C(sI — A)"'B+D, and sv and w contain the
returned singular values and frequency points, respectively. The user can specify the set
of frequencies at which the singular values of G(s) are to be computed by including the
frequency vector, w, as an additional input argument of the command as follows:

>>[sv,w] = sigma(sys,w) <enter>

Also, sigma can calculate the singular values of some commonly encountered functions
of G(iw) by using the command as follows:

>>[sv,w] = sigma(sys,w,type) <enter>

where type = 1, 2, or 3 specify that singular values of G™'(iw), I+ G(iw), or I+
G !(iw), respectively, are to be calculated. (Of course, sigma requires that G(iw) should
be a square matrix.) Hence, sigma is a versatile command, and can be easily used to
compute singular values of return ratios, or return difference matrices. If you do not have
the Robust Control Toolbox, you can write your own M-file for calculating the singular
value spectrum using the MATLAB functions svd or eig as discussed above.

Example 7.11

Re-consider the flexible bomber airplane of Example 7.8, where we designed an
optimal compensator using an optimal regulator with Q =0.01I, R=1, and a
Kalman filter with F =B, V = 0.0007BTB, Z = CCT, and ¥ = 0, to recover the
performance of the full-state feedback regulator. Let us now see how robust such
a compensator is by studying the return ratio at the plant’s input. Recall that the
return ratio at the plant’s input is H(s)G(s), which is the transfer matrix of a hypo-
thetical system formed by placing the plant, G(s), in series with the compensator,
H(s) (the plant is followed by the compensator). Hence, we can find a state-space
representation of H(s)G(s) in terms of the state-space model, sysHG, with plant
model, sysp, and compensator model, sysc, as follows:

>>sysp=ss(A,B,C,D);sysc=ss(A-B*K-L*C+L*D*K,L, -K,zeros(size(K,1)));
<enter>

>> sysHG = series(sysp,sysc); <enter>
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The singular value spectrum of the return ratio at the plant’s input for frequency
range 1072-10* rad/s is calculated as follows:

>>w = logspace(-2,4); [sv,w] = sigma(sysHG,w); <enter>

while the singular value spectrum of the return ratio at plant’s input of the full-state
feedback system is calculated in the same frequency range by

>>sysfs=ss(A,B, -K,zeros(size(K,1))); [svi,wl] = sigma(sysfs,w);
<enter>

The two sets of singular values, sv and sv1, are compared in Figure 7.13, which is
plotted using the following command:

>>semilogx(w,20*1log10(sv), ‘:’,w1,20*1log10(sv1)) <enter>

Note that there is a large difference between the smallest singular values of
the compensated and full-state feedback systems, indicating that the compensated
system is much less robust than the full-state feedback system. For recovering the
full-state feedback robustness at the plant’s input, we re-design the Kalman filter
using V = pB"B, Z = CCT, and ¥ = 0, where p is a scaling parameter for the
process noise spectral density. As p is increased, say, from 10 to 108, the return
ratio of the compensated plant approaches that of the full-state feedback system
over a larger range of frequencies, as seen in the singular value plots of Figure 7.14.
For p = 10, the smallest singular value of the compensated system’s return ratio
becomes equal to that of the full-state feedback system in the frequency range
1-100 rad/s, while for p = 108 the range of frequencies (or bandwidth) over which
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Figure 7.13 Singular values of the return ratio matrix, H(s)G(s), at the plant's input of
compensated system and full-state feedback system for the flexible bomber
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Figure 7.14 Comparison of singular values of return ratio matrix at the plant's input of full-state
feedback system and compensated system for loop transfer recovery with process noise spectral
density, V = 10BTB and V = 108B"B (flexible bomber)

the loop transfer recovery occurs increases to 1072—10* rad/s. At frequencies higher
than the loop transfer recovery bandwidth the return ratio is seen to roll-off at more
than 50dB/decade. Such a roll-off would also be present in the singular values of the
closed-loop transfer matrix, which is good for rejection of noise at high frequen-
cies. However, within the loop transfer recovery bandwidth, the roll-off is only
about 20dB/decade. Therefore, the larger the bandwidth for loop transfer recovery,
the smaller would be the range of frequencies over which high noise attenuation is
provided by the compensator. Hence, the loop transfer recovery bandwidth must not
be chosen to be too large; otherwise high frequency noise (usually the measurement
noise) would get unnecessarily amplified by smaller roll-off provided within the
LTR bandwidth.

Note that the Kalman filter designed in Example 7.8 with V = 0.0007B"B
recovers the performance of the full-state feedback system (with a loss of
robustness), whereas the re-designed Kalman filter with V = 108BTB recovers the
robustness of the full-state feedback system over a bandwidth of 10° rad/s (with
an expected loss of performance). By choosing a large value of the process noise
spectral density for loop transfer recovery, a pair of Kalman filter poles comes very
close to the imaginary axis and becomes the dominant pole configuration, thereby
playing havoc with the performance. Hence, there is a contradiction in recovering
both performance and robustness with the same Kalman filter, and a compromise
must be made between the two.

It is interesting to note that Example 7.11 has a non-minimum phase plant, with
a plant zero at s = 2.5034 x 1077, The loop transfer recovery is not guaranteed for
non-minimum phase plants, because it is pointed out above that H(s)G(s) converges
to —K(sI — A)"!B in the limit of infinite process noise spectral density, provided
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that the plant is square and minimum phase. The reason why LQG/LTR compen-
sators generally cannot be designed for non-minimum phase plants is that perfect
loop transfer recovery requires placing some poles of the Kalman filter at the zeros
of the plant [4]. If the plant is non-minimum phase, it implies that the Kalman
filter for perfect loop transfer recovery should be unstable. However, if the right-
half plane zeros of a non-minimum phase plant are very close to the imaginary
axis (as in Example 7.11), the frequency associated with it lies outside the selected
bandwidth for loop transfer recovery, and hence loop transfer recovery in a given
bandwidth is still possible, as seen above.

Example 7.12

Let us design an optimal LQG/LTR compensator for the flexible, rotating spacecraft
of Example 6.2. The spacecraft consists of a rigid hub and four flexible appendages,
each having a tip mass, with three torque inputs in N-m, u,(¢), us(t), us(t), and
three angular rotation outputs in rad., y;(t), y2(¢), y3(f). A linear, time-invariant
state-space representation of the 26th order spacecraft was given in Example 6.2,
where it was observed that the spacecraft is unstable and uncontrollable. The natural
frequencies of the spacecraft, including structural vibration frequencies, range from
0-47 588 rad/s. The uncontrollable modes are the structural vibration modes, while
the unstable mode is the rigid-body rotation with zero natural frequency. Hence, the
spacecraft is stabilizable and an optimal regulator with Q = 200I, and R =1 was
designed in Example 6.2 to stabilize the spacecraft, with a settling time of 5 s, with
zero maximum overshoots, while requiring input torques not exceeding 0.1 N-m.
when the spacecraft is initially perturbed by a hub rotation of 0.01 rad. (i.e. the
initial condition is x(0) = [0.01; zeros(1, 25)]7).

We would like to combine the optimal regulator already designed in Example 6.2
with a Kalman filter that recovers the return ratio at the plant’s input in the frequency
range 0-50000 rad/s (approximately the bandwidth of the plant). To do so, we
select F=B, Z = CCT, ¥ =0, and V = pB"B, where p is a scaling parameter.
By comparing the singular values of H(s)G(s) with those of —K(sI — A)~'B, for
various values of p, we find that loop transfer recovery occurs in the desired band-
width for p = 10?2, for which the Kalman filter gain, covariance, and eigenvalues
are obtained as follows (only eigenvalues are shown below):

>>[L,P,E] = 1ge(A,B,C,1e12*B’*B,C*C’) <enter>

E =

-1.0977e+008+ 1.0977e+0081
-1.0977e+008- 1.0977e+008i
-1.0977e+008+ 1.0977e+0081
-1.0977e+008- 1.0977e+0081
-8.6042e+004+ 8.6074e+0041
-8.6042e+004- 8.6074e+0041i
-4.6032e+000+ 4.5876e+0041
-4.6032e+000- 4.5876e+004i
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-8.7040e-001+ 2.3193e+0041
-8.7040e-001- 2.3193e+0041
-3.4073e-001+ 1.0077e+0041
-3.4073e-001- 1.0077e+0041
-3.5758e-002+ 3.7121e+0031
-3.5758e-002- 3.7121e+0031
-1.0975e-002+ 4,0386e+002i1
-1.0975e-002- 4.0386e+0021i
-1.2767e-004+ 4.5875e+0041
-1.2767e-004- 4.5875e+0041
-9.3867e-005+ 3.7121e+0031
-9.3867¢-005- 3.7121e+0031
-7.4172e-005+ 1.0077e+0041
-7.4172e-005- 1.0077e+0041
-5.8966e-005+ 2.3193e+0041
-5.8966e-005- 2.3193e+0041
-3.8564e-005+ 4.0385e+0021
-3.8564e-005- 4.0385e+0021

Note that the Kalman filter is stable, but has some eigenvalues very close to the
imaginary axis, which is likely to degrade the performance of the closed-loop system.
The singular values of the return ratio at the plant’s input, for the compensated
system are calculated as follows, with K obtained in Example 6.2:

>>sysp=ss(A,B,C,D);sysc=ss(A-B*K-L*C+L*D*K,L,-K,zeros(size(K,1)));
<enter>

>> sysHG = series(sysp,sysc); <enter>

>>w = logspace(-2,86); [sv,w] = sigma(sysHG,w); <enter>

The singular values of the full-state feedback return ratio at the plant’s input are
obtained as follows:

>>3ysfs=ss(A,B, -K,zeros(size(K,1))); [svi,wl] = sigma(sysfs,w); <enter>

The two sets of singular values (full-state feedback and compensated system) are
compared in Figure 7.15. Note that the smallest singular value of the return ratio
is recovered in the range 0—50000 rad/s, as desired, while the other two singular |
values are recovered in a larger frequency range. The plant has some zeros very close
to the imaginary axis (largest real part is 3.3 x 107%) in the right-half plane, hence,
the plant is non-minimum phase and perfect loop transfer recovery is not guaran-
teed. Also, due to this nature of the plant, the function lge may yield inaccurate
results.

Owing to the presence of some Kalman filter poles very close to the imagi- §
nary axis, the closed-loop system would have unacceptable performance. Hence, for
improving the closed-loop performance, the loop transfer recovery bandwidth must
be reduced. A good compromise between performance and robustness is achieved by
choosing p = 10°. Figure 7.16 shows the spectrum of the smallest singular value of §
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Figure 7.15 Singular values of the return rafio matrix at the plant's input of the full-state
feedback system compared with those of the compensated plant with V = 1022B"B for the
flexible, rotating spacecraft
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Figure 7.16 Smallest singular value of H(s)G(s) of the optimal (LQG) compensated system
with V = 10B"B for the flexible rotating spacecraft, compared with that of the full-state feedback
system showing loop-transfer recovery in the frequency range 5-500 rad/s

H(s)G(s) which indicates a loop transfer recovery bandwidth of 50—500 rad/s. The
performance of the closed-loop system is determined using a SIMULINK simulation
of the initial response with x(0) = [0.01; zeros(1, 25)]7) and measurement noise
in the hub-rotation angle, y,(¢), as shown in Figure 7.17. A closed-loop settling time
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Figure 7.17 Simulated initial response of the LQG compensated flexible rotating spacecraft's
hub-rotation angle, y1 (), with measurement noise, Ay, (1), in the hub-rotation channel

of five seconds, with maximum overshoots less than 1% and a steady-state error §
of 0.002 rad, is observed when the measurement error in y;(¢) is £3.5 x 107 rad.
Comparing with the full-state feedback response with zero noise seen in Figure 6.5,
the performance is fairly robust with respect to measurement noise.
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