
406 DIGITAL CONTROL SYSTEMS

The solution of digital time-varying and nonlinear state-equations also can be obtained
using the techniques presented in Chapter 4.

8.10 Design of Multivariable, Digital Control Systems
Using Pole-Placement: Regulators, Observers,
and Compensators

In the previous section, we noted how a digital state-space representation is equiva-
lent to an analog state-space representation, with the crucial difference that while the
latter's characteristics are analyzed in the s-plane, the former is characterized in the
z-plane. Therefore, whereas the techniques of Chapter 5 were employed to design an
analog control system by placing its poles in the s-plane, a digital control system can be
similarly designed by placing its poles at desired locations in the z-plane. Of course,
if a digital system is controllable, its poles can be placed anywhere in the z-plane
using full-state feedback. It can be shown that the conditions and tests for control-
lability for a linear, time-invariant digital system are the same as those presented in
Chapter 5 for the analog systems, with the coefficient pair (A, B) replaced by the pair
(Ad, Bd). Hence, one can directly apply the MATLAB (CST) command ctrb (Ad, Bd)
to construct the controllability test matrix. Furthermore, using a full-state feedback,
u(k) = — Kx(k), results in a closed-loop system with poles at the eigenvalues of the
closed-loop state-dynamics matrix, AdC = (Ad — BdK). For single-input systems, one can
derive the equivalent expression for the full-state feedback gain matrix, K, as the Acker-
mann's pole-placement formula of Eq. (5.52), namely K = (a — a)P'P-1, where P' is
the controllability test matrix of the plant in controller companion form, a is the vector
containing coefficients of the closed-loop characteristic polynomial (except the highest
power of z) (i.e. the coefficients of z in |zl — Add), and a is the vector containing coef-
ficients of the digital plant's characteristic polynomial (except the highest power of z)
(i.e. the coefficients of z in |zl —Ad|) . Such a direct equivalence between analog and
digital systems allows us to use the MATLAB (CST) commands place and acker to
design full-state feedback regulators for digital systems in the same manner as presented
in Chapter 5.

Example 8.18

It is desired to use a digital computer based controller with a sampling interval of
0.2 seconds, to control the inverted pendulum on a moving cart of Example 5.9.
We begin by converting the plant to an equivalent digital plant using the command
c2dm as follows:

»A = [0 0 1 0; 0 0 0 1; 10.78 0 0 0 ; -0.98 0 0 0];B = [ 0 0 - 1 1]';
C=[1 0 0 0;0 1 0 0];D=[0; 0]; <enter>

»[Ad,Bd,Cd,Dd] = c2dm(A,B,C,0,0.2, 'zoh1 ) <enter>
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Ad =
1.2235 0
-0.0203 1.0000
2.3143 0
-0.2104 0

0.2147 0
-0.0013 0.2000
1.2235 0
-0.0203 1.0000

Bd =
-0.0207
0.0201
-0.2147
0.2013

Cd =
1 0 0 0

0 1 0 0

Dd =
0
0

(rad/sec)

The plant's pole locations in the z-plane are as follows:

»ddamp(Ad,0.2) <enter>
Eigenvalue Magnitude Equiv. Damping Equiv. Freq.
1.9283 1.9283 -1.0000 3.2833
1.0000 1.0000 -1.0000 0
1.0000 1.0000 -1.0000 0
0.5186 0.5186 1.0000 3.2833

Note that the plant is unstable. Let us choose to place all the four closed-loop poles
at z = 0. Then the full-state feedback gain matrix is obtained by using the command
acker as follows (we could not have used place because the multiplicity of poles
to be placed is greater than rank(B), i.e. 1):

»P=zeros(1,4); K = acker(Ad,Bd,P) <enter>

K =
-142.7071 -61.5324 -41.5386 -30.7662

Let us check the closed-loop pole locations, and calculate the closed-loop natural
frequencies and damping ratios as follows:

»ddamp(Ad-Bd*K, 0.2) <enter>

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/s)
3.646-004 3.646-004 1.006+000 3.966+001
6.036-008+3.64e-004i 3.646-004 9.816-001 4.046+001
6.036-008-3.64e-004i 3.646-004 9.816-001 4.046+001
-3.646-004 3.646-004 9.306-001 4.266+001

Note that the closed-loop poles have not been placed with a great precision, but the
error is acceptable for our purposes. The closed-loop digital system is now stable.
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Figure 8.10 Initial response of a control system for inverted pendulum on a moving cart with
all closed-loop poles placed at z = 0, illustrating the deadbeat response

with all damping ratios of l; % 1. Let us see how a closed-loop system with all poles
at z ^ 0 behaves. Figure 8.10 shows an initial response of the closed-loop system
obtained using dinitial as follows:

»dinitial(Ad-Bd*K, zeros(4,1),Cd,Dd, [0.1;0;0;0]); <enter>

Note the interesting feature of the closed-loop response seen in Figure 8.10: both
the outputs settle to a steady-state in exactly four time steps. This phenomenon of a
sampled data analog system settling to a steady-state in a finite number of sampling
intervals is called a deadbeat response, and is a property of a stable system with all
poles at z = 0.

In addition to the full-state feedback regulator problem, all other concepts presented in
Chapter 5 for analog control system design - tracking systems, observability, observers,
and compensators - can be similarly extended to digital systems with the modification
that the time derivative, dx(t)/dt, is replaced by the corresponding value of x(t) at the
next sampling instant, i.e. x(k + 1), and the analog state coefficient matrices, A, B, C,
D, are replaced by the digital coefficient matrices, Ad, Bd, Cd, Dd. For instance, let us
consider a full-order observer for a digital system described by Eqs. (8.71) and (8.72).
As an extension of the analog observer described by Eq. (5.97), the state-equation for the
digital observer can be written as follows:

0 = Ly(*) (8.74)
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_ DESIGN OF MULTIVARIABLE, DIGITAL CONTROL SYSTEMS _ 409

where x0(fc) is the estimated state-vector, u(k) is the input vector, y(k) is the output
vector (all at the kih sampling instant), A0, B0 are the digital state-dynamics and control
coefficient matrices of the observer, and L is the digital observer gain matrix. The matrices
A0, B0, and L must be selected in a design process such that the estimation error,
e0(&) = x(k) — x0(&), is brought to zero in the steady state. On subtracting Eq. (8.74)
from Eq. (8.71), we get the following error dynamics state-equation:

e0(* + 1) - A0e0(£) + (Ad - A0)x(£) + (Bd - B0)u(fc) - Ly(*) (8.75)

Substitution of Eq. (8.72) into Eq. (8.75) yields

e0(£ + 1) = A0e0(fc) + (Ad - A0)x(/0 + (Bd - B0)u(fc) - L[Cdx(£) + Ddu(*)] (8.76)

or

e0(& + 1) = A0e0(£) + (Ad - A0 - LCd)x(£) -f (Bd - B0 - LDd)u(fc) (8.77)

From Eq. (8.77), it is clear that estimation error, e0(&), will go to zero in the steady
state irrespective of x(fc) and u(&), if all the eigenvalues of A0 are inside the unit
circle, and the coefficient matrices of x(&) and u(fc) are zeros, i.e. (Ad — A0 — LCd) = 0,
(Bd — B0 — LDd) = 0. The latter requirement leads to the following expressions for A0

and B0:
A0 = Ad - LCd; B0 = Bd - Ldd (8.78)

The error dynamics state-equation is thus the following:

e0(fc + 1) = (Ad - LCd)e0(*) (8.79)

The observer gain matrix, L, must be selected to place all the eigenvalues of A0 (which
are also the poles of the observer) at desired locations inside the unit circle in the z -plane,
which implies that the estimation error dynamics given by Eq. (8.79) is asymptotically
stable (i.e. e0(&) -> 0 as k -> oo).

The digital observer described by Eq. (8.74) estimates the state-vector at a given
sampling instant, x0(& + 1), based upon the measurement of the output, y(&), which is
one sampling instant old. Such an estimate is likely to be less accurate than that based on
the current value of the measured output, y(k +1). Thus, a more accurate linear, digital
observer is described by the following state-equation:

Xo(fc + 1) = A0x0(/c) + BoU(Jfc) + L*y(k + 1) (8.80)

where L* is the new observer gain matrix. The observer described by Eq. (8.80) is referred
to as the current observer, because it employs the current value of the output, y(k + 1).
Equation (8.80) yields the following state-equation for the estimation error:

A0e0(fc) + (Ad - A0)x(£) + (Bd - B0)u(£)

-L*[Cdx(*+l)+Ddu(*+ I)] (8.81)

 EBSCOhost - printed on 10/27/2025 6:11 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



410 DIGITAL CONTROL SYSTEMS

Substituting for x(k + 1) from Eq. (8.71), we get

e0(k + 1) = A0e0(*) + (Ad - A0 - L*CdAd)x(*) + (Bd - B0

-L*CdBd)u(£) - L*Ddu(fc + 1 ) (8.82)

For e0(/:) to go to zero in the steady state, the following conditions must be satisfied in
addition to A0 having all eigenvalues inside the unit circle:

A0 = Ad - L*CdAd (8.83)

(Bd - B0 - L*CdBd)u(*) = L*Ddu(* + 1 ) (8.84)

which result in the following state equations for the estimation error and the observer:

e0(A: + 1) = (Ad - L*CdAd)e0(*) (8.85)

x<,(* + 1) = (Ad - L*CdAd)Xo(*) + (Bd - L*CdBd)u(*)

- L*Ddu(A: + 1 ) + L*y(* + 1 ) (8.86)

Equation (8.86) can be alternatively expressed as the following two difference equations:

xi (* + 1 ) = AdXo(fc) + Bdu(fc) (8.87)

x«(* + 1) = *i(* + 1) + L*[y(* + 1) - Ddu(* + 1) - Cdx,(* + 1)1 (8.88)

where \i(k + 1) is the first estimate of the state (or predicted state) at the (k + l)th
sampling instant based upon the quantities at the previous sampling instant, and Xo(/t + 1)
is the corrected - or final - state estimate due to the measurement of the output at the
current sampling instant, y(k + 1). The predictor-corrector observer formulation given
by Eqs. (8.87) and (8.88) is sometimes more useful when implemented in a computer
program.

For practical purposes, it is not the observer alone that we are interested in, but the
implementation of the digital observer in a feedback digital compensator. Using a full-
order current digital observer in a full-state feedback compensator results in a feedback
control law of the form

u(*) = -Kxo(fc) (8.89)

Substituting Eq. (8.89) into Eq. (8.86), we can write the state-equation for the estimated
state as follows:

xj* + !) = (!- L*DdK)-'(Ad - L*CdAd - BdK + L*CdBdK)Xo(*)

+ (I - L'DdKr'L'yC* + 1) (8.90)

Note that Eq. (8.90) requires that the matrix (I — L*DdK) must be non-singular. Substi-
tuting Eq. (8.89) into Eq. (8.71), we get the other state-equation for the closed-loop system
as follows:

\(k + 1) = Adx(£) - BdKxo(Jt) (8.91)
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Equations (8.90) and (8.91) must be solved simultaneously to get the composite state-
vector for the closed-loop system, xc(fc) — [XT(&); x0

T(&)]r. We can combine Eqs. (8.90)
and (8.91) into the following state-equation:

i r A d
J ~ [ 0xo(*+ l )

{8'92)

Substituting y(k + 1) = Cdx(£ + 1) + Ddu(* + 1) = Cdx(k + 1) - DdKx0(fc + 1) into
Eq. (8.92), and re-arranging, we can write

\x(k + ! ) ] _ [ Ad -BdK
[x0(k + 1)J ~ [(I + F'DdKr'F'CdAj (I + F*DdK) ' (I - L*DdK) ' (Ad - L*CdAd - BdK)

(8.93)

where F* = (I — L*DdK) ]L*. Note that Eq. (8.93) is a homogeneous digital state-
equation representing closed-loop dynamics of the compensated system.

Example 8.19

Let us design a full-order observer based digital compensator with a sampling
interval of 0.2 seconds, to control the inverted pendulum on a moving cart of
Example 8.18. The cart's displacement, j2(0> is the only measured output, which
results in C = [0; 1; 0; 0], and D = 0. We begin by converting the plant to an equiv-
alent digital plant with a z.o.h using the command c2dm as follows:

»A = [0 0 1 0; 0 0 0 1; 10.78 0 0 0 ; -0.98 0 0 0] ; B = fO 0 -1 1]';
C = [ 0 1 0 0 ] ; D = 0; <enter>

»[Ad,Bd,Cd,Dd] = c 2 d m ( A , B 5 C , 0 , 0 . 2 , ' z o h ' ) ; <enter>

Ad =
1.2235 0 0.2147 0

-0.0203 1.0000 -0.0013 0.2000
2.3143 0 1.2235 0

-0.2104 0 -0.0203 1 .0000

Bd =
-0.0207
0.0201

-0.2147
0.2013

Cd -
0 1 0 0
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Dd =
0

Note that since A0 = Aj — L*CdAd, the observability test matrix is now computed by
ctrb (AdT, AdTCdT). Let us check whether the digital plant is observable as follows:

»rank(ctrb(Ad',Ad'*Cd')) <enter>

ans =
4

Since the rank of the observability test matrix is equal to the order of the plant, the
plant is observable. The observer gain matrix is calculated by placing the observer
poles well inside the unit circle, such as at z = ±0.7, and z = 0.5 ± 0.5i. Then the
observer gain matrix, L*, is computed using place as follows:

»P=[-0.7 0.7 0.5-0.51 0.5+0.51]; Lstar - place(Ad', Ad'*Cd', P)'
<enter>

place: ndigits= 15
Lstar =
-38.3080
1.2450

-102.1822
6.4364

Let us check whether observer poles are placed as desired:

»eig(Ad - Lstar*Cd*Ad) <enter>

ans =
0.5000+0.50001
0.5000-0.50001
0.7000
-0.7000

Note that the plant is strictly proper. Hence, the observer's state coefficient matrices
are computed as follows:

»Ao = Ad - Lstar*Cd*Ad, Bo = Bd - Lstar*Cd*Bd <enter>

Ao =
0.4453 38.3080 0.1635 7.6616
0.0050 -0.2450 0.0003 -0.0490
0.2385 102.1822 1.0870 20.4364
-0.0796 -6.4364 -0.0117 -0.2873

Bo =
0.7480
-0.0049
1.8357
0.0722
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A full-state feedback regulator was designed for this plant in Example 8.18,
to place all the regulated system's poles at z = 0. Using this regulator gain
matrix, K, the digital closed-loop state-dynamics matrix (Eq. (8.93)) is calculated
as follows:

»Ac=[Ad -Bd*K; Lstar*Cd*Ad Ao-Bd*K]; <enter>

Finally, let us calculate the compensated digital system's initial response to xc(0) —
[xT(0); x0

T(0)]r = [0.1; 0; 0; 0; 0; 0; 0; O]7 (implying an initial pendulum angle of
0.1 rad.) using the command dinitial as follows:

»dinitial(Ac,zeros(8,1), [Cd zeros(1,4) ] ,0, [0.1 zeros(1,7) ]') <enter>

The resulting digital initial response is plotted in Figure 8.11. The initial response
settles to zero in about 25 sampling instants, with a maximum overshoot of 0.6 m.
Note that the closed-loop system's performance has deteriorated when compared to
the deadbeat response of Figure 8.10, due to the presence of dominant observer poles.
Let us see what happens if we place all the observer poles also at z = 0, as follows:

»P=zeros(1,4) ;Lstar = acker(Ad / ,Ad'*Cd / ,P) / ; <enter>

and re-calculate the closed-loop initial response, which is plotted in Figure 8.12.
Figure 8.12 shows that the deadbeat response of Figure 8.10 has been largely
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Figure 8.11 Closed-loop initial response (cart's displacement, /2 (k), in m) of inverted pendulum
on a moving cart with full-order compensator designed using observer poles at z = ±0.7, and
z = 0.5 ± 0.5!
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Figure 8.12 Closed-loop initial response (pendulum angle in radian) of inverted pendulum on
a moving cart with full-order compensator designed using all observer poles at z = 0, and all
regulator poles also at z = 0. Note the restoration of the deadbeat response of Figure 8.10, but
with larger overshoots

restored, but with twice the overshoots of Figure 8.10, and with a larger settling
time (seven steps) when compared to that of Figure 8.10 (four steps).

As an alternative to the calculations given above, MATLAB (CST) provides the
command dreg for constructing the state-space representation of the full-order digital
compensator of Eq. (8.93), and can be used to derive the full-order, full-state feedback
closed-loop digital system as follows:

»[ac,bc,cc,dc] = dreg(Ad,Bd,Cd,Dd,K,Lstar) <enter>

where (ac, be, cc, dc) is the digital state-space representation of the digital compensator
whose input is the plant output, y(k + 1), and whose output is the plant input, u(k). Then
the digital compensator is put in a closed-loop with the plant, to obtain the closed-loop
state-space representation (Ac, Be, Cc, DC) as follows:

»sysc=ss (ac, be, cc, dc); sysp=ss (Ad, Bd, Cd, Dd); <enter>

»syss=series(sysc,sysp);sysCL=feedback(syss,eye(size(syss))); <enter>

»[Ac,Bc,Cc,Dc] = ssdata(sysCL); <enter>

The command dreg allows constructing a compensator in which only selected outputs
are measured that are specified using an additional input argument, SENSORS. Also,
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