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some additional known, non-stochastic inputs of the plant (such as desired outputs) can
be specified as an additional argument, KNOWN, while control inputs (i.e. inputs applied
by the compensator to the plant) are specified by an additional argument, CONTROLS.
The resulting compensator has control feedback commands as outputs and the known
inputs and sensors as inputs. The command dreg is thus used in its most general form as
follows:

»[ac,bc,cc jdc] = dreg (Ad ,Bd,Cd,Dd,K,Lstar, SENSORS .KNOWN, CONTROLS); <enter>

The greatest utility of dreg lies in the digital equivalent of LQG compensators. We will
discuss digital optimal control in the next section.

8.11 Linear Optimal Control of Digital Systems

In a manner similar to the linear optimal control of analog systems presented in Chapter 6,
we can devise equivalent techniques for linear optimal digital control. The digital optimal
control expressions are in terms of difference equations rather than differential equations
implementation presented in Chapter 6. We saw in the previous section how the imple-
mentation of a difference equation for a current digital observer resulted in a state-space
model (Eq. (8.86)) that was quite different from that of the analog observer of Eq. (5.97).
A similar modification is expected in the solution to the digital optimal control problem.
Let us begin with the full-state feedback regulator design. An objective function to be
minimized for the control of a linear, time-varying digital system can be expressed as the
digital equivalent of Eq. (6.31) as follows:

N

J (0, N) = T XT \k)Q(k)x(k) + UT '(fc)R(fc)u(A:) (8.94)

The quadratic form of the objective function, /(O, N), given by Eq. (8.94) suffers no loss
of generality if we assume both Q(k) and R(k) to be symmetric matrices. The optimal
control gain matrix, K(&), of the control law, u(&) = — K(&)x(&), is to be chosen such
that 7(0, AO is minimized with respect to the control input, u(&), subject to the constraint
that the state-vector, x(fc), is the solution of the following time-varying state-equation:

x(k + 1 ) = A(*)x(*) + B(*)u(fc) (8.95)

Note that we have dropped the subscript d from the coefficient matrices, A(&) and B(&), in
Eq. (8.95) - indicating a digital system - for simplicity of notation. To derive the optimal
regulator gain matrix which minimizes /(O, N), it is more expedient to work with J(m, N)
which can be expressed as follows:

J(m, N) = /(O, AO - 7(0, m - 1) = F(m) + F(m +!) + • • • + F(N - 1) + F(AO
(8.96)

where F(k) = XT (k)Q(k)x(k) + UT \k)R(k)u(k) . To Eq. (8.96), we can apply the principle
ofoptimality [2], which states that if the regulator, u(&) = — K(fc)x(&), is optimal for the
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416 DIGITAL CONTROL SYSTEMS

interval 0 < k < N, then it is also optimal over any sub-interval, m < k < N, where 0 <
m < N. The principle of optimality can be applied by first minimizing J(N, N) = F(N),
and then finding F(N - 1) to minimize J(N - 1, AT) = F(N - 1) + F(N) = F(N -
1) 4- J0(N, N), where J0(N, N) refers to the minimum value of J(N, N), and continuing
this process until 7(0, A7) is minimized. Such a sequential minimization is called dynamic
programming in optimization parlance. Note that as in the case of analog optimal control
(Chapter 6), the digital optimal control solution is obtained by marching backwards in
time, beginning with the minimization of J(N, N).

The minimum value of J(N, N) = F(N) = \T (N)Q(N)\(N) + UT (N)R(N)u(N)
with respect to the input, u(AO, is easily obtained to be

J0(N, N) = xT(AOQ(AOx(AO (8.97)

because the state at the final sampling instant, x(AO, is independent of the final control
input, u(AO, and the minimum value of UT (N)R(N)u(N) = 0, which occurs for the
optimal control input, u«(AO = 0. Substituting Eq. (8.95) into Eq. (8.97) for k = N - 1,
we get

J0(N, N) = [\(N - l)x(Af - 1) + B(W - l)u(W - l)]TQ(N - 1)[A(A> - \)\(N - 1)

- l)u(N - !)]„.(*-,) (8.98)

where the subscript Uo(N — I) indicates that the expression on the right-hand side of
Eq. (8.98) is evaluated for the optimal control input at the (N — l)th sampling instant.
Then J(N-l, N) is determined by substituting Eq. (8.98) into J(N-\, N) = F(N-\)
+ J0(N, N) to yield

J(N - 1, AO = x ( N -

- l)x(N - 1) + E(N - \)u(N -

) (8.99)

The optimal control input at the (N — l)th sampling instant, UQ(N — 1), can be evaluated
by solving

dJ(N- l,N)/8u(N- 1 )=0 (8.100)

Since J(N — 1, AO consists of quadratic terms, such as uTRu, and bilinear terms, such
as uTQx and xTQu, to evaluate the derivative in Eq. (8.100), we must know how to
differentiate such scalar terms with respect to the vector, u(N — 1). From Appendix B,
we can write a(uTRu)/9u = 2Ru, 3(uTQx)/au = Qx, and 9(xTQu)/3u = QTx. After
carrying out the differentiation in Eq. (8.100), we get

- l)]T\(N - 1)

+ BT(Af - 1)Q(A^ - 1)A(# - l)x(N - 1) = 0 (8.101)
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or

2R(N - l)u0(N - 1) 4-2BT(W - 1)Q(A/ - 1)B(A/ - \)u0(N - 1)

4-2BT(Af- 1)Q(A/- 1)A(A/- l)x(A7- 1) =0 (8.102)

which yields

Uo(A/ - 1) = -[R(N -1)4- BT(W - 1)Q(A/ - 1)B(A/ - I)]"1

+ BT(A/ - 1)Q(A/ - \)\(N - l)x(A7 - 1) (8.103)

Comparing Eq. (8.103) with the control law u(&) — — K(fc)x(fc), the optimal regulator
gain matrix at the (N — l)th sampling instant, K«,(A/ — 1), is obtained to be

= [R(N - 1) + B ( W

x BT(A/ - 1)Q(A/ - l)\(N - 1) (8.104)

Substituting Eq. (8.103) into Eq. (8.99), we get the following quadratic form for J0(N —
1, A/):

J0(N - 1, AO = xT(W - 1)M(A7 - l)x(A/ - 1) (8.105)

where M(A^ — 1) is a symmetric matrix. Continuing in this manner, we can write

J0(N - 2, AO = XT(// - 2)M(A^ - 2)x(A7 - 2) (8.106)

J0(m -l,N)= xT(m - l)M(m - l)x(m - 1) (8.107)

and
J0(m, N) - xT(m)M(m)x(m) (8.108)

Substituting Eq. (8.95) into Eq. (8.108) for k = m — 1, we can write

J0(m, N) = [A(m - l)x(m -1)4- B(m - l)u(m - l)]7M(m)

x [A(m - l)x(m - 1) + B(m - l)u(m - 1)] (8.109)

To obtain the optimal control input at the (m — l)th sampling instant, u0(m — 1), we must
minimize J(m — 1, A/), which is written as

J(m - 1, A/) = J0(m, N) + F(m - 1)

= [A(m - l)x(m - 1) + B(m - l)u(m - l)]7M(m)[A(m - l)x(m - 1)

+ B(m - l)u(m - 1)] + xT(m - l)Q(m - l)x(m - 1)

+ uT(m - l)R(m - l)u(m - 1) (8.1 10)

Then the minimization of J(m — I, N) with respect to u(m — 1) yields

3J(m - 1, A0/9u(m - 1) = 2BT(m - l)M(m)[A(m - l)x(m - 1) 4- B(m - l)u(m - 1)]

+ 2R(m- l)u(m- 1) = 0 (8.111)
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or

ujm - 1) = -[BT(m - l)M(m)B(m - 1)

+ R(m - l)]-1BT(m - l)M(m)A(m - l)x(m - 1) (8.112)

Thus, the optimal regulator matrix at the (m — 1 )th sampling instant is

Ko(m - 1) = [BT(w - l)M(m)B(m - 1) + R(m - l)]-1BT(m - l)M(m)A(m - 1)
(8.113)

Finally, substituting Eq. (8.112) into Eq. (8.110), we get the following expression for
7 0 (m- l ,AO:

J0(m - 1, AO = xT(m - l)[Aj(m - l)M(m)Ac(m - 1) + Q(m - 1)

+ KT(m- l)R(m- l)K(m - l)]x(m - 1) (8.114)

where Ac(m - 1) = A(w - 1) - B(m - l)K(m - 1). Comparing Eqs. (8.107) and
(8.114), it is clear that

M(m - 1) = A^(m - l)M(m)Ac(m - 1) + Q(m - 1) + KT(m - l)R(m - l)K(m - 1)
(8.115)

Equation (8.115) is a nonlinear matrix difference equation, and can be recognized as the
digital equivalent of the matrix Riccati equation, which must be integrated backwards in
time, beginning from the terminal condition obtained from Eq. (8.97) as M(AO = Q(N).

In summary, the digital, linear quadratic optimal regulator problem consists of the
recursive solution of the following equations:

x(* + 1) = [A(*> - B(*)Ko(*)]x(*) (8.116)

KJ*) = [BT(*)M(* + l)B(Jt) + R(*)]-1BT(*)M(* + l)A(Jk) (8.117)

M(k) = [\(k) - BWKoWfMC* + l)[\(k) - B(*)Ko(*)] + Q(k)

+ Kj(*)R(*)Ko(*) (8.118)

with the terminal conditions, M(AO = Q(/V) and Ko(W) = 0» and given the initial
condition, x(0). Since both initial and terminal conditions are specified for solving
Eqs. (8.116)-(8.118), these difference equations pose a two-point boundary value
problem. Note that the minimum value of the objective function, 7(0, N), can be obtained
from Eq. (8.108) with m = 0 as

y0(0, AO = xT(0)M(0)x(0) (8.119)

While it is possible to solve the two-point boundary value problem posed by
Eqs. (8.116)-(8.118) using a nonlinear time marching numerical method (such as the
Runge-Kutta method discussed in Chapter 4), usually we are interested in a steady state
solution, where the terminal time is infinite, or N —> oo. In the limit W -*• oo, both the
objective function, 7(0, A7), and the optimal gain matrix, Ko(AO, become constants. It
must be pointed out that we are not going to solve Eqs. (8.116)-(8.118) for an infinite
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number of sampling instants, but assume that 7(0, N) and Ko(N) approximately become
constants as N becomes large. Of course, the closed-loop regulated system given by
Eq. (8.116) must be asymptotically stable for the steady state approximation to be used.
The steady state approximation of the linear optimal control problem is especially valid
for time-invariant systems for which the optimal regulator gain matrix approaches a
constant value after a few sampling instants. Let us therefore consider a time-invariant
system with A(&) and B(&) replaced by the constant matrices A and B, respectively.
Also, for the time-invariant system, the state and control weighting matrices, Q and R,
in the objective function are also constant. In the steady state, the matrix M(fc) becomes
constant, and we can write M(£) = M(k + 1) = M0, where M0 is a constant matrix. Thus,
in the steady state, Eq. (8.118) can be written as

Mo = (A - BK0)M0(A - BK0) + Q + K R K « (8.120)

and Eq. (8.117) becomes

K0 = (BTM0B + R)-1BTM0A (8.121)

With the substitution of Eq. (8.121), Eq. (8.120) can be re-written in the following form,
which does not contain KQ:

0 = M0 - ATM0A + ATM0B(R + BTM0B)~1BTMA - Q (8.122)

Equation (8.122) is the digital algebraic Riccati equation -a digital equivalent of
Eq. (6.33). The optimal control gain matrix, KQ, is thus obtained from Eq. (8.121)
using the solution, M0, to the algebraic Riccati equation, Eq. (8.122). A set of sufficient
conditions for the existence of a unique, positive definite solution to Eq. (8.122) are as
follows:

(a) The state weighting matrix, Q, must be symmetric and positive semi-definite.

(b) The control weighting matrix, R, must be symmetric and positive definite.

(c) The digital system represented by A and B must be controllable (or at least,
stabilizable).

A commonly employed numerical approach to finding the solution to Eq. (8.122) is
by defining a Hamiltonian matrix, J-C, as follows:

where p(k) is called the costate vector and 3-i is the following:

A + BR-1BT(A~1)7Q -BR-1BT(A~1)r "

-CA-VQ (A-')' J (8'124)

Of course, the definition of the Hamiltonian matrix by Eq. (8.124) requires that A must be
non-singular. The Hamiltonian matrix and the costate vector are creatures residing in an
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420 DIGITAL CONTROL SYSTEMS

alternative formulation of the linear optimal control problem, called the minimum principle
[3], which requires minimizing the Hamiltonian, 3{ = l/2[xT(fc)Qx(fc) + uT(fc)Ru(fc)] +
pT(fc + l)[Ax(fc) + Bu(&)] with respect to the control input, u(&). Note that 3-C includes
the term pT(fc + l)[Ax(fc) + Bu(fc)] as a penalty for deviating from the system's state-
equation, \(k + 1) = Ax(£) + Bu(£), which was a constraint in the minimization of the
objective function, 7(0, N). The optimal control input resulting from the minimization
of 3f is exactly the same as that obtained earlier in this section. In terms of the costate
vector, p(fc), the optimal control input can be expressed as follows [3]:

Uo(*) = -R'WpOk + 1) (8.125)

Now, since Eq. (8.125) requires marching backwards in time, it would be mores useful
to express Eq. (8.123) as follows:

It can be shown easily that the inverse of the Hamiltonian matrix is given by

#-' =
QA-1 AT +

(8.127)

The Hamiltonian matrix has an interesting property that if A. is an eigenvalue of 3~C, then
I/A is an eigenvalue of 3~C~l. Also, the eigenvalues of 3f are the eigenvalues of 3~C~*.
Hence, it follows that the eigenvalues of 3-C (or 3~C~l) must occur in reciprocal pairs,
i.e. A I , 1/Ai, A2, 1/A.2, etc. If the eigenvalues of 3-C (or 3~C~l) are distinct, then we
can diagonalize the state-equations, (8.126) (see Chapter 3). The state-equations given
by Eq. (8.126) can be diagonalized by a transformation matrix, T = V"1, where V is a
modal matrix whose columns are the eigenvectors of 3~C~*. If we partition V into four
(n x n) sized blocks (where n is the order of the system) as follows:

V=[v2! ¥22] (8-128)

such that
. . . r A ft i

(8.129)'-]
where A is the diagonal matrix consisting of the eigenvalues of 3~C (or 3f ') that lie
inside the unit circle in the z-plane. Clearly, A"1 is the diagonal matrix consisting of the
eigenvalues of 3-C (or J-f"1) that lie outside the unit circle in the z-plane. Equation (8.129)
suggests that the modal matrix, V, is partitioned into stable and unstable eigenvalues
of 3-C (or 3-C~l). Comparing Eqs. (8.125) and (8.112) in the limit k -> oo it can be
shown [2] that

M0 = V2iV7,1 (8.130)

Equation (8.130) gives us a direct method of calculating the solution to the algebraic
Riccati equation, MO. However, use of Eq. (8.130) imposes an additional condition to
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the sufficient conditions for the existence of a unique positive definite solution of the
algebraic Riccati equation, namely that A must be non-singular. We can use Eq. (8.130)
by constructing the Hamiltonian matrix, finding the eigenvectors of its inverse, and parti-
tioning the modal matrix, V, according to Eq. (8.128), or simply use the specialized
MATLAB (CST) command dlqr which does the same thing. The command dlqr is the
digital equivalent of the command Iqr for solving the analog algebraic Riccati equation,
and is used as follows:

»[Ko,Mo,E] = dlqr(A,B,Q,R) <enter>

where the matrices A, B, Q, R, KQ, and M0 are the same as in the foregoing discussion,
while E is the returned matrix of the eigenvalues of A — BK0.

Example 8.20

Let us design an optimal regulator for a digital turbo-generator with the following
digital, linear, time-invariant state-space representation:

A =

B =

" 0.1346 0.1236
-0.1091 0.5412

0.0426 0.1052
-0.0045 0.0205

0.0022 -0.0150
0.0002 -0.0162

" -0.0121 0.0117"
-0.0046 -0.4960
-0.0150 0.5517

0.0095 -0.1763
-0.0055 -1.0216

0.0025 1.3944_

f" 0.5971 -0.7697
L3-1013 9.3422 -

D \ \] I
[0 OJ

-0.0361 0.0037 0.0004 -0.0003"
0.3851 -0.0631 -0.0520 0.0152
0.7915 0.0700 0.0504 -0.0172

-0.0542 0.7932 -0.5687 0.0025
0.0384 0.5681 0.7526 0.0357
0.0142 0.0004 -0.0299 0.9784 _

4.8850 4.8608 -9.8177 -8.8610 1
5.6000 -0.7490 2.9974 10.5719 J (8.131)

The two inputs are the throttle-valve position, u\(k), and the loading torque, U2(k),
while the two outputs are the deviation from the desired generated voltage (or voltage
error), y\(k) (volt), and the deviation of the generator load's angular position, (or
load position error), y2(k) (radians). For this sixth-order system, it is desired that
the closed-loop initial response to the initial condition, x(0) = [0.1; 0; 0; 0; 0; 0]r

should decay to zero in about 20 sampling instants, with a maximum overshoot in
y\ (k) of 0. 1 V and in y2(k) of 0.35 rad. For the plant, the first output takes about 50
samples to settle to zero. We select the weighting matrices for the optimal
problem as Q = I and R = I. The inverse of the Hamiltonian matrix, 3~C~l ,

control
and its

eigenvalues are calculated as follows:
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»Q=eye(6); R=eye(2); <enter>

»Ainv=inv(A) ; Rp=B*inv(R)*B'; Hinv =
+Q*Ainv*Rp] <enter>

Hinv =

Columns 1 through 7
5.8602 -1.5384
1.5564 1.6366

-0.5237 -0.1360
-0.0100 -0.0193
0.0461 0.0572
0.0338 0.0311
5 . 8602 - 1 . 5384
1 . 5564 1 . 6366

-0.5237 -0.1360
-0.0100 -0.0193
0.0461 0.0572
0.0338 0.0311

Columns 8 through 12
-0.8515 0.9488
0.7278 -0.8093

-0.4742 0.5277
0.3838 -0.4270
0.4567 -0.5079

-0.6740 0.7497
-0.9606 0.9914
1.2691 -0.7041

-0.0890 1.3193
0.3207 -0.3571
0.4047 -0.4574

-0.6588 0.7325

»eig(Hinv) <enter>
ans =

5.7163 + 1.80381
5.7163 - 1.80381
2.0510
1.0596 + 0.67761
1.0596 - 0.67761
0.1591 + 0.05021
0.1591 - 0.05021
0.6698 + 0.42831
0.6698 - 0.42831
0.4876
1.1062
0 . 9040

1 . 0209
-0.7308
1.3087
0 . 0356

-0.1095
-0.0347
1 . 0209

-0.7308
1.3087
0.0356

-0.1095
-0.0347

-0.3035
0.2585

-0.1687
0.1365
0.1622

-0.2395
-0.3080
0.2790

-0.2229
0.9297

-0.4064
-0.2370

-0.0739
0 . 0475

-0.0359
0.8172

-0.6130
-0.0178
-0.0739
0 . 0475

-0.0359
0.8172

-0.6130
-0.0178

- 1 . 7544
1.4991

-0.9768
0 . 7906
0 . 9408

- 1 . 3883
-1.7521
1.4842

-0.9384
1 .3588
1 . 6934

-1.3526

[Ainv Ainv*Rp; Q*Ainv A'

-0.2316 0
0.1953 -0

-0.1227 0
0.6128 -0
0.8754 -0
0.0316 1

-0.2316 0
0.1953 -0

-0.1227 0
0.6128 -0
0.8754 -0
0.0316 1

2.3950
-2.0461
1.3333

- 1 . 0792
- 1 . 2840
1 . 8950
2.3951

-2.0623
1.3476

- 1 . 0787
-1.3139
2 . 8733

Note that the eigenvalues of J-C~l occur in reciprocal stable and
expected. Then, the steady state solution to the algebraic Riccati

.0523 0.0211

.0451 -0.0170

.0295 0.0114

.0236 -0.0091

.0332 -0.0107

.0199 0.0159

.0523 0.1557

.0451 0.1065

.0295 -0.0247

.0236 -0.0054

.0332 -0.0103

.0199 0.0156

unstable pairs, as
equation, MO, the
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LINEAR OPTIMAL CONTROL OF DIGITAL SYSTEMS 423

optimal regulator gain matrix, K<,, and the set of closed-loop eigenvalues, E, can
be obtained using dlqr as follows:

»[Ko, Mo, E] = dlqr(A, B, Q, R) <enter>

Ko =
-0.0027 -0.0267 -0.0886
0.0024 -0.0025 0.0223

Mo =
1.0375
-0.0491
0.0001
0.0495
0.0678
-0.0246

0.0491
1.8085
1.6151
0.1214
0.2535
0.3059

0.0001
1.6151
5.8619
0.7194
0.3663
-1.0029

0.0115
0.0514

0.0495
0.1214
0.7194
5.2730

-0.5666
1.6496

-0.0375
-0.4316

0.0678
-0.2535
0.3663

-0.5666
4.1756
0.8942

0.0216
0.3549

-0.0246
-0.3059
-1.0029
1.6496
0.8942
3.2129

0.1591 + 0.05021
0.1591 - 0.05021
0.4876
0.6698 + 0.42831
0.6698 - 0.42831
0.9040

The closed-loop initial response is obtained using dinitial as follows:

»din i t ia l (A-B*Ko ) B,C,D, [0.1 zeros(1 ,5) ] ' ) <enter>

The resulting outputs, y\(k) and yi(k), are plotted in Figure 8.13. Note that the
requirement of both outputs settling to zero in about 20 sampling instants, with
specified maximum overshoots, has been met.
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Figure 8.13 Initial response of the optimally regulated digital turbo-generator system
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