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424 DIGITAL CONTROL SYSTEMS

As in Chapter 6, we can formulate the digital equivalent of the output weighted linear,
optimal control, where the weightage is placed on the output rather than on the state-
vector. The objective function for such a problem for the time-invariant case can be
written as

N
JO.N) =)y ()Qyk) +u ()Ru(k) (8.132)
k=0

which, by the substitution of the output equation, y(k) = Cx(k) + Du(k), becomes of the
following form:

N
J(©, Ny =Y x"(h)Q"x(k) + 2u” (k)Nx(k) + u” (k)Ru(k) (8.133)
k=0

Equation (8.133) is the general quadratic form of the quadratic objective function, and
can be minimized using digr with a fourth additional input argument, the cross-weighting
matrix, N. You can derive the algebraic Riccati equation for the steady state solution of the
output weighted problem along the lines of the foregoing discussion. The MATLAB (CST)
directly provides the solution for the output weighted, steady state, linear, time-invariant,
optimal control problem through its command digry which is used as follows:

>>[Ko,Mo,E] = dlgry(A,B,C,D,Q,R) <enter>

where the symbols have their usual meanings.

The solution to the digital terminal-time weighted linear optimal control problem
for a time-invariant plant can be obtained along the lines of Section 6.5, with suitable
modifications. You are encouraged to write a computer program — a digital equivalent
of tpbviti.m — for solving the two-point boundary value problem for the terminal-time
weighted digital optimal control.

8.12 Stochastic Digital Systems, Digital Kalman Filters,
and Optimal Digital Compensators

There is no fundamental difference in the way random (or stochastic) variables are
handled in modeling and control of digital and analog systems. Hence, the methods of
Chapter 7 can be applied on a one-to-one basis to stochastic systems, of course with the
understanding that the s-plane is transformed to the z-plane, and an analog state-space
representation is transformed into a digital representation. However, there is a funda-
mental difference in the manner in which digital and analog systems respond to noise.
As we have seen earlier in this chapter, a digital control system’s frequency response is
limited to signals whose frequencies are less than the Nyquist frequency, /T . Hence,
a digital control system is inherently robust with respect to high-frequency noise. This
is precisely why digital control systems have become so popular in applications where
high-frequency noise is present. For example, a digital video disc (DVD) player shows
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STOCHASTIC DIGITAL SYSTEMS 425

much clearer pictures than the analog video cassette player (VCP), primarily due to this
inherent robustness.

Since any noise with frequency higher than the Nyquist frequency gets automatically
cut-off by a digital control system, we have to only worry about noise with frequency
contents smaller than the Nyquist frequency. In a manner similar to analog filters, we can
define a digital filter as any digital system through which a noise is input. For single-input,
single-output applications, a digital filter has a pulse transfer function, G(z). Depending
on the application, we can design low-pass, band-pass, or high-pass digital filters with
appropriate pulse transfer functions using an extension of the techniques of Chapter 7.

Example 8.21

Let us construct a first order low-pass digital filter to cut-off a uniformly distributed
random noise superimposed on a signal, sin(10¢). The pulse transfer function of the
filter is given by G(z) = a/(z + b), where a and b are constants. Let us also initially
select a sampling interval, T = 0.1 s. The Nyquist frequency is /T = 31.4 rad/s.
Hence, the noise with frequencies higher than 31.4 rad/s gets automatically cut-off.
Since the input is a continuous time signal, the filter is selected to be a sampled-data
analog filter with transfer function, G(s) = 15/(s + 15) and a zero-order hold. Then
G(z) is obtained using ¢2dm as follows:

>>num = 15; den = [1 15]; [numd, dend] = c2dm(num,den,0.1,‘zoh’)
<enter>

numd2 =
0 0.7769

dend2 =
1.0000 -0.2231

Hence, G(z) = 0.7769/(z — 0.2231). The response of this filter to the noisy signal
can be simulated with the following command:

>>t=0:0.05:1; u = sin(10*t)+randn(size(t));
y = dlsim(numd,dend,u); <enter>

The most important extension of the analog stochastic concepts of Chapter 7 for digital
stochastic systems is the digital Kalman filter. The digital Kalman filter is an optimal
digital observer for a noisy plant. Consider a linear, time varying plant with the following
digital state-space representation:

x(k + 1) = A(k)x(k) + B(k)u(k) + Fk)v(k) (8.134)
y(k) = C{k)x(k) + D(k)uk) + z(k) (8.135)

where v(k) is the process noise vector, which may arise due to modeling errors such as
neglecting nonlinear or higher-frequency dynamics, and z(k) is the measurement noise
vector. By assuming v(k) and z(k) to be discrete, uncorrelated white noises, we will only
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426 DIGITAL CONTROL SYSTEMS

be extending the methodology of Chapter 7 for a description of the digital stochastic
plant. The correlation matrices of non-stationary discrete white noises, v(k) and z(k),
can be expressed as follows:

Ry(j, k) = V(k)dji (8.136)
R.(j, k) = Z(k)djx (8.137)

where V (k) and Z(k) are the power spectral density matrices (also the covariance matrices)
of v(k) and z(k), respectively, and J;; is the Kronecker delta function (§jx = 0 when
J # k,and 8;; = 1 when j = k). The digital, time-varying Kalman filter’s state-equation
is written as that of the current observer (Eq. (8.86)) in the following manner:

Xo(k +1) = [A(k) — L*(K)C(k)A(K)Ix, (k) + [B(k) — L°(k)C(k)B(k)]u(k)
— L°()D(kyuck + 1) + L°(k)y(k + 1) (8.138)

where the optimal gain matrix, L°(k), is to be determined by minimizing the covariance
of the estimation error vector, e,(k). Since the estimation error vector, e,(k), is a discrete
random variable, we can use the methods of Section 7.4 for obtaining a corresponding
difference equation to be satisfied by the optimal covariance matrix. However, recall that
in Section 7.4, we had only minimized a conditional covariance matrix of estimation error
(i.e. the covariance matrix based on a finite record of the output). The digital equivalent of
the conditional covariance matrix is the covariance matrix of the prediction error vector,
ei(k + 1) = [x(k + 1) — x4 (k + 1)], which is based on the measurement of the output at
the previous sampling instant, y(k) (see Eq. (8.87)). Recall that the current observer state-
equation can be alternatively expressed as two predictor-corrector equations, Egs. (8.87)
and (8.88). For the optimal current observer given by Eq. (8.138), the predictor-corrector
difference equations are the following:

x1(k + 1) = A(k)x, (k) + B(k)u(k) (8.139)
Xok+ 1) =x1(k+ 1)+ LG+ Dlytk + 1) =Dk + Duk + 1)
— Ck + Dxqg(k + 1)) (8.140)

where x4 (k + 1) is the predicted state-vector at the (k + 1)th sampling instant based upon
the quantities at the previous sampling instant, and x,(k + 1) is the corrected state-vector
estimate due to the measurement of the output at the current sampling instant, y(k + 1).
Defining R(k) as the optimal covariance matrix of the prediction error, we can write

R2(k) = E[ej(k)e] (k)] = E[{x(k) — x1(k)}{x(k) — x,(k)}T] (8.141)
whereas the optimal covariance matrix of the corrected (or true) estimation error is
written as

P°(k) = E[e,(k)el (k)] = E[{x(k) — Xo(k)H{x (k) — Xo(k)}] (8.142)

You can show, using these definitions and the method of Section 7.4, that for the linear,
time-varying, digital Kalman filter, the following difference equations must be satisfied
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by the optimal covariance matrix, R (k):
Ry(k+ 1) = A1 - L"(k)C(k)]Rg(k)AT(k) + F(k)V(K)FT (k) (8.143)
where the Kalman filter gain, L°(k), is given by
L°(k) = RS(K)CT (k) [C(k)RS(K)CT (k) + Z (k)] (8.144)

For a linear time invariant plant in the steady state, the state coefficient matrices, the
power spectral densities of the noise processes, the Kalman filter gain, and the optimal
covariance matrix, all become constants. In such a case, Eq. (8.143) becomes

R = A(I - L°C)RSAT + FVF’ (8.145)

where
L° = ReCT(CRCT +7)™! (8.146)

Substituting Eq. (8.146) into Eq. (8.145) we get the following explicit equation in terms
of the unknown matrix, R:

R? = ARSAT — ARCT(CRSC” + Z)"'CR2AT + FVF! (8.147)

Equations (8.146) and (8.147) should be compared with Eqgs. (8.121) and (8.122), respec-
tively, for the digital optimal regulator problem. It can be seen that the two sets of
equations are identical in form, with the corresponding matrices compared in Table 8.2.
Due to this similarity, the Kalman filter and optimal regulator are called dual problems.
An alternative form of Egs. (8.146) and (8.147) in terms of the optimal covariance matrix
of the estimation error, P°, can be written as follows:

L° =P°CT2"! (8.148)
R? = AP°AT 4 FVFT (8.149)

where
P° = R? — R2CT(CRSCT + Z)"'CR? (8.150)

From Table 8.2 it is clear that Eq. (8.147) is none other than the algebraic Riccati
equation, which can be solved by the techniques of the previous section. After the solution,

Table 8.2 Comparison of analogous matrices for the digital Kalman
filter and the digital optimal regulator

Digital Optimal Regulator Digital Kalman Filter

A AT

B o

M, R?

Q FVF?!

R Y/

K P° = R? — R2CT(CRCT + Z)~'CR?
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428 DIGITAL CONTROL SYSTEMS

R, of the algebraic Riccati equation is obtained, it can be substituted into Eq. (8.146) to
get the Kalman filter gain matrix, L°.
The inverse of the Hamiltonian matrix for the steady state Kalman filter is given by

S _[@nt! (AT)~1CTZ-1C
H —[FVFT(AT)—I A + FVFT(ATy-ICTZ-!C (8.151)

Then the steps given by Eqgs. (8.127)—(8.130) can be extended for obtaining the solution
to the algebraic Riccati equation. We can either use the MATLAB (CST) command dlgr
with the appropriate substitution of the regulator matrices given by Table 8.2 for obtaining
the Kalman filter gain, or the specialized CST command dlge, which directly uses the
Kalman filter matrices. The command dlge is used as follows:

>>[Lo,Ro,P0,E] = dlqe(A,F,C,V,Z) <enter>

where A, F, and C are the state coefficient matrices of the plant, V and Z are the covariance
matrices of the process and measurement noise, and Lo = L°, the returned Kalman filter
gain, Ro = RY, the returned optimal covariance matrix of the predicted estimation error,
Po = P°, the returned optimal covariance matrix of the estimation error, and E is a
vector containing the eigenvalues of the digital Kalman filter (i.e. the eigenvalues of
A — L°CA). When used with a fifth input argument, N, dlge solves the Kalman filter
gain when the process and measurement noises are correlated, with the cross-covariance
matrix, N = E[v(k)zT (k)]. MATLAB also provides the command digew to solve for the
Kalman filter gain when the process noise directly affects the output, and the process and
measurement noises are uncorrelated.

An optimal digital compensator can be formed with the optimal regulator and the
Kalman filter using the methodology of Section 8.10. Such a compensator is called the
digital, linear quadratic gaussian (DLQG) compensator, and is the digital counterpart of
the LQG compensator of Chapter 7.

Example 8.22

Let us derive a Kalman filter for the turbo-generator of Example 8.20, and combine
the optimal regulator and the Kalman filter into an optimal digital compensator.
Assuming that the process noise, v(k), consists of two variables, with the coeffi-
cient matrix, F = B, and the covariance matrix, V = I. The measurement noise is
assumed to have a covariance matrix, Z = I. The Kalman filter gain and the optimal
covariance matrices of the prediction and estimation errors are obtained using dlge
as follows:

>>(Lo, Ro, Po, E]=dlqe(A, B, C, eye(2), eye(2)) <enter>

Lo =
-0.0011  -0.0037
-0.0041 -0.0666
0.0112 0.0881
-0.0054 -0.0118
-0.0503 -0.1789
0.0219 0.2481
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Ro =
0.0025 -0.
-0.0044 0.
0.0000 -0.
-0.0058 0.
0.0066 0.
-0.0102 -0.

Po =
0.0020 -0.
-0.0122 0.
0.0102 -O.
-0.0071 0.
-0.0142 0.
0.0187 -0.

E =

0.0577

-0.0957

-0.3994

0044
2479
2770
0864
5165
7057

0122
1067
0905
0617
1393
1801

0.6125 + 0.51531
0.6125 - 0.51531

0.8824

.0000
.2770
.3263
.0859
.6216
.8529

.0102
.0905
.0800
.0532
.1233
.1589

-0.0058
0.0864
-0.0859
0.0448
0.1470
-0.1939

-0.0071
0.0617
-0.0532
0.0404
0.0806
-0.1017

0.0066
0.5165
-0.6216
0.1470
1.2086
-1.6557

-0.0142
0.1393
-0.1233
0.0806
0.1994
-0.2521

-0.
-0.

0.
-0.
.6557
.2813

-1

0102
7057
8529
1939

.0187
-0.
.1589
-0.
-0.
.3255

1801

1017
2521

All the Kalman filter eigenvalues are seen to be inside the unit circle. An optimal
regulator for this plant was designed in Example 8.20 with the following regulator

gain matrix:

—0.0027
BL'“‘[ 0.0024

—0.0267
—0.0025

—0.0886 0.0115
0.0223 0.0514

—0.0375 0.0216
—0.4316 0.3549

)

We can use this regulator matrix and the Kalman filter gain calculated above to
form a digital optimal compensator as follows:

>>[ac,bc,cc,dc] = dreg(A,B,C,D,Ko,L0)%
digital compensator’s state-space model <enter>

ac =

0.1788  0.2529
-0.4141  -0.3308
0.1827  0.5037
-0.3818  -1.0436
-0.1208  -0.4202
-0.0477 -0.1929

be =

-0.0014 -0.0140
0.0201 0.0949
-0.0111  -0.0435
0.0288 0.1163
-0.0096 0.0423
-0.0179 0.0178
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-0.1088
0.8289
0.5889
0.4609
0.3444
0.1706

-0.0003
-0.0642
0.0634
0.7491
0.6989
0.0292

0.0329
-0.3533
0.3088
-0.7100

0.0907

0.3426

0.1310
-0.6385
0.1481
-0.9088
-0.1336

0.1362
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CC =
-0.0219 -0.0809 -0.0624 0.0091 -0.0413 -0.0284
-0.5325 -1.5382 0.8126 0.0332 -0.6425 -1.1477

dc =
0.0014 0.0059
0.0294 0.1668

>>sysc = ss(ac,bc,cc,dc); sysp = ss(A,B,C,D); <enter>

>>syss = series(sysc,sysp);
sysCL = feedback(syss,eye(size(syss))); <enter>

>>{aCL, bCL, cCL, dCL] = ssdata(sysCL); %
closed-loop system’s state-space model <enter>

The closed-loop initial response (with the same initial condition as in Example 8.20)
is now calculated and plotted in Figure 8.14 using the following command:

>>dinitial(aCL,bCL,cCL,dCL,[0.1 zeros(1,11)]’) <enter>

Comparing Figures 8.13 and 8.14, we find that the DLQG compensated system
has a slightly deteriorated performance when compared to the full-state feedback
regulated system of Example 8.20 (the overshoots and steady-state error are larger).

Finally, we test the robustness of the DLQG compensated system to white noise
disturbances occurring at the compensator’s input. For this purpose, we construct a
SIMULINK block diagram shown in Figure 8.15, consisting of the plant connected
in closed-loop with the DLQG compensator. A two channel simultaneous white

Response to initial conditions
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Figure 8.14 Initial response of the DLQG compensated digital turbo-generator system
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Figure 8.15 Simulation of the DLQG compensated turbo-generator with simultaneous white

noise disturbances in each output channel

noise input to the control system is provided through the band-limited white noise
block, with the noise power set at 1076 at a sample interval of 0.01 s. The simulated
initial response of y; (k) and y, (k) is seen in Figure 8.15 to be quite unaffected by the
applied disturbances, which are of very high frequency. This simulation illustrates

the built-in robustness of digital systems to high-frequency noise.
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