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(in Hertz) of the analog signal. This minimum value of the sampling rate is known as the
Nyquist sampling rate.

It is clear from the above discussion that a successful implementation of a digital control
system requires a mathematical model for the A/D converter. Since A/D converter is based
on two distinct processes - sampling and holding - such a model must include separate
models for both of these processes. As with continuous time systems, we can obtain
the mathematical model for A/D converter in either frequency domain (using transform
methods and transfer function), or in the time domain (using a state-space representation).
We begin with the frequency domain modeling and analysis of single-input, single-output
digital systems.

8.2 A/D Conversion and the z-Transform

The simplest model for the sampling process of the A/D converter is a switch which
repeatedly closes for a very short duration, tw, after every T seconds, where l/T is the
sampling rate of the analog input, /(?)• The output of such a switch would consist of
series of pulses separated by T seconds. The width of each pulse is the duration, tw, for
which the switch remains closed. If tw is very small in comparison to 7, we can assume
that f ( t ) remains constant during each pulse (i.e. the pulses are rectangular). Thus, the
height of the &th pulse is the value of the analog input f ( t ) at t = kT, i.e. f ( k T ) . If
tw is very small, the fcth pulse can be approximated by a unit impulse, 8(t — kT), scaled
by the area f(kT}tw. Thus, we can use Eq. (2.35) for approximating /(/) by a series of
impulses (as shown in Figure 2.16) with T — kT and AT = tw, and write the following
expression for the sampled signal, ftw*(t)'-

(8-0

Equation (8.1) denotes the fact that the sampled signal, ftw*(t), is obtained by sampling
f ( t ) at the sampling rate, l/T, with pulses of duration tw. The ideal sampler is regarded
as the sampler which produces a series of impulses, /*(/), weighted by the input value,
f ( k T ) as follows:

(8.2)
k=0

Clearly, the ideal sampler output, f * ( t ) , does not depend upon tw, which is regarded as
a characteristic of the real sampler described by Eq. (8.1). The ideal sampler is thus a
real sampler with tw = 1 second.

Since the sampling process gives a non-zero value of /*(?) only for the duration
for which the switch remains closed, there are repeated gaps in f * ( t ) of approxi-
mately T seconds, in which /*(?) is zero. The holding process is an interpolation
of the sampled input, /*(?), in each time interval, T, so that the gaps are filled. The
simplest holding process is the zero-order hold (z.o.h.), which holds the input constant
over each time interval, T (i.e. applies a zero-order interpolation to /*(?))• As a result,
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Figure 8.2 Schematic diagram and input, sampled, and output signals of an analog-to-digital (A/D)
converter with an ideal sampler and a zero-order hold

the held input, //,(?), has a staircase time plot. A block diagram of the ideal sampling and
holding processes with a zero-order hold, and their input and output signals, are shown
in Figure 8.2.

Since the input to the z.o.h. is a series of impulses, /*(/), while the output, //,(f), is
a series of steps with amplitude f(kT), it follows that the impulse response, h(t), of the
z.o.h. must be a step that starts at / = 0 and ends at t = T, and is represented as follows:

= us(t) - us(t - T) (8.3)

or, taking the Laplace transform of Eq. (8.2), the transfer function of the z.o.h. is given by

-.(l-Q-Ts)/s (8.4)

Note that we have used a special property of the Laplace transform in Eq. (8.3) called the
time-shift property, which is denoted by £[y(t — T)] = e~Ts£[y(t)]. Similarly, taking the
Laplace transform of Eq. (8.2), we can write the Laplace transform of the ideally sampled
signal, F*(s), as follows:

00

~~ 'm (8.5)
k=0

If we define a variable z such that z = e , we can write Eq. (8.5) as follows:

*=0

(8.6)

In Eq. (8.6), F(z) is called the z-transform of f ( k T ) , and is denoted by z{f(kT)}.
The z-transform is more useful in studying digital systems than the Laplace transform,
because the former incorporates the sampling interval, T, which is a characteristic of
digital systems. The expressions for digital transfer functions in terms of the z-transform
are easier to manipulate, as they are free from the time-shift factor, e~Ts, of the Laplace
transform. In a manner similar to the Laplace transform, we can derive z-transforms of
some frequently encountered functions.
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Example 8.1

Let us derive the z-transform of f ( k T ) = u s ( k T ) , the unit step function. Using the
definition of the z-transform, Eq. (8.6), we can write

z ~ ) (8.7)

or

F(z) = z / ( z ~ l ) (8.8)

Thus, the z-transform of the unit step function, us(kT), is z/(z — 1). (Note that
we have used the binomial series expansion in Eq. (8.7), given by (1 — Jt)~' =
1 +x + x2 +x3 + . . . ) .

Example 8.2

Let us derive the z-transform of the function f ( k T ) = &~akT , where t > 0. Using
the definition of the z-transform, Eq. (8.6), we can write

00 00

F(z) = e-fl*V* - (zeorr* - 1 + (ze"1)"1 + (ze«rr2 + • - •
k=0 k=()

= 1/[1 - (ze^r1] - z/(z - ze-"r) (8.9)

Thus, zje-^"7"} = z/(z - ze-ar).

The z-transforms of other commonly used functions can be similarly obtained by
manipulating series expressions involving z, and are listed in Table 8.1.

Some important properties of the z-transform are listed below, and may be verified by
using the definition of the z-transform (Eq. (8.6)):

(a) Linearity:

z { a f ( k T ) } = a z [ f ( k T ) } (8.10)

z{fi(kT) + /2(*r)} = z{/, (*r)J + z{f2(kT}} (8.1 1)

(b) Scaling in the z -plane:

z{Q~akrf(kT)} = F(earz) (8.12)

(c) Translation in time:

z{f(kT + T)} = zF(z) - z/((T) (8. 13)

where /(0~) is the initial value of f ( k T ) for k — 0. Note that if f ( k T ) has a jump at
k = 0 (such as f ( k T ) = us(kT)), then /(0~) is understood to be the value of f ( k T )
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378 DIGITAL CONTROL SYSTEMS

Table 8. 1 Some commonly encountered z-transforms

Discrete Time
Function, f ( k T )

us(kT)
kT
e-akT

1 - Q-akT

kTe~akT

kT -(1 -e~akT)/a

sin(akT)

cos(akT)

e-akT sin(££7")

e~akT cos(bkT)

(kT)"

z-transform, F(z)

z/(z - 1)
rz / (c - l ) 2

z/(z-e-"T)
z(\-e-aT)/((z-\)(z-e-aT)}
Tze-aT/(z-e-"T)2

Tz/(z -\)2-z(\- e~aT)/[a(z - l)(z - e~aT)]
zsin(aT)/[z2 -2zcos(aT) + 1]
z[z - cos(aT)]/[z2 - 2zcos(aT) + 1]
ze~aT sin(bT)/[z2 — 2ze~aT cos(bT) — z~2aT]
[z2 - ze-"T cos(bT)]/[z2 - 2ze~aT cos(bT) - e'^7]
lima^0(-\)

nd''/da"[z/(z - e-"7")]

Laplace Transform of
Equivalent Analog
Function, F(s)

1/5

I/*2

\/(s+a)

a/[s(s+a)]

\/(s+a)2

a/[s2(s + a)]

a/(s2 +a2)

s/(s2+a2)

b/((s+a)2+b2}

(s + a)/((s+a)2+b2]

rt!/5" + '

before the jump. Thus, for f ( k T ) = us(kT), /(O ) =0. A negative translation in time
is given by z { f ( k T - T)} = z~

l F(z) + z/(0~).

(d) Differentiation with z:

z{kTf(kT)} = -TzdF(z)/dz = -

(e) Initial value theorem:

(8.14)

(8.15)

Equation (8.15) holds if and only if the said limit exists. Note that if f ( k T ) has a jump
atk = 0 (such as f ( k T ) = us(kT)\ then /(0+) is understood to be the value of f ( k T )
after the jump. Thus, for f ( k T ) = us(kT), /(0+) = 1.

(f) Final value theorem:

(8.16)

Equation (8.16) holds if and only if the said limit exists. Using Table 8.1, and the prop-
erties of the z-transform, we can evaluate z-transforms of rather complicated functions.

Example 8.3

Let us find the z-transform of f ( k T ) = \te~akT sin(bkT - 2T). From Table 8.1,
we know that

z{sin(Mr)} = zsin(6r)/[z2 - 2zcos(fer) -I- 1] (8.17)

Then, using the linearity property of the z-transform given by Eq. (8.10), we can
write

z{10sin(Mr)} = (8.18)
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