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A/D CONVERSION AND THE Z-TRANSFORM 375

(in Hertz) of the analog signal. This minimum value of the sampling rate is known as the
Nyquist sampling rate.

It is clear from the above discussion that a successful implementation of a digital control
system requires a mathematical model for the A/D converter. Since A/D converter is based
on two distinct processes — sampling and holding — such a model must include separate
models for both of these processes. As with continuous time systems, we can obtain
the mathematical model for A/D converter in either frequency domain (using transform
methods and transfer function), or in the #ime domain (using a state-space representation).
We begin with the frequency domain modeling and analysis of single-input, single-output
digital systems.

8.2 A/D Conversion and the z-Transform

The simplest model for the sampling process of the A/D converter is a switch which
repeatedly closes for a very short duration, t,, after every T seconds, where 1/7 is the
sampling rate of the analog input, f(¢). The output of such a switch would consist of
series of pulses separated by T seconds. The width of each pulse is the duration, ¢, for
which the switch remains closed. If ¢, is very small in comparison to 7, we can assume
that f () remains constant during each pulse (i.e. the pulses are rectangular). Thus, the
height of the kth pulse is the value of the analog input f(¢) at t = kT, i.e. f(kT). If
1, is very small, the kth pulse can be approximated by a unit impulse, 5(t — kT'), scaled
by the area f(kT)t,. Thus, we can use Eq. (2.35) for approximating f(¢) by a series of
impulses (as shown in Figure 2.16) with T = kT and At =1t,, and write the following
expression for the sampled signal, f,"(¢):

fru@ =D fUTI,8( = kT) =t ) fRT)3(t —kT) (8.1)

k=0 k=0

Equation (8.1) denotes the fact that the sampled signal, f,,,*(¢), is obtained by sampling
f(¢) at the sampling rate, 1/T, with pulses of duration #,,. The ideal sampler is regarded
as the sampler which produces a series of impulses, f*(¢), weighted by the input value,
f(kT) as follows:

o

fr@y =) f&TIS@ —kT) (8.2)

k=0

Clearly, the ideal sampler output, f*(¢), does not depend upon t,,, which is regarded as
a characteristic of the real sampler described by Eq. (8.1). The ideal sampler is thus a
real sampler with 7, = 1 second.

Since the sampling process gives a non-zero value of f*(t) only for the duration
for which the switch remains closed, there are repeated gaps in f*(¢r) of approxi-
mately T seconds, in which f*(¢) is zero. The holding process is an interpolation
of the sampled input, f*(z), in each time interval, 7', so that the gaps are filled. The
simplest holding process is the zero-order hold (z.o.h.), which holds the input constant
over each time interval, T (i.e. applies a zero-order interpolation to f*(t)). As a result,
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Figure 8.2 Schematic diagram and input, sampled, and output signals of an analog-to-digital (A/D)
converter with an ideal sampler and a zero-order hold

the held input, f(¢), has a staircase time plot. A block diagram of the ideal sampling and
holding processes with a zero-order hold, and their input and output signals, are shown
in Figure 8.2.

Since the input to the z.o.h. is a series of impulses, f*(z), while the output, f,(), is
a series of steps with amplitude f(kT), it follows that the impulse response, h(t), of the
z.0.h. must be a step that starts at t+ = 0 and ends at t = T, and is represented as follows:

h(t) = us(t) —us@t —T) (8.3)
or, taking the Laplace transform of Eq. (8.2), the transfer function of the z.0.h. is given by
Gis)=(1—-eT/s 8.4)

Note that we have used a special property of the Laplace transform in Eq. (8.3) called the
time-shift property, which is denoted by L[y(t — T)] = e~ 7* L{y(¢)). Similarly, taking the
Laplace transform of Eq. (8.2), we can write the Laplace transform of the ideally sampled

signal, F*(s), as follows:
o0

F*(s)=)_ fkT)e™T (8.5)

k=0

If we define a variable z such that z = e”*, we can write Eq. (8.5) as follows:

F) =) f&D)z™ (8.6)

k=0

In Eq. (8.6), F(z) is called the z-transform of f(kT), and is denoted by z{f(kT)}.
The z-transform is more useful in studying digital systems than the Laplace transform,
because the former incorporates the sampling interval, 7, which is a characteristic of
digital systems. The expressions for digital transfer functions in terms of the z-transform
are easier to manipulate, as they are free from the time-shift factor, e~7*, of the Laplace
transform. In a manner similar to the Laplace transform, we can derive z-transforms of
some frequently encountered functions.
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Example 8.1

Let us derive the z-transform of f(kT) = u,(kT), the unit step function. Using the
definition of the z-transform, Eq. (8.6), we can write
o0 o
F(z) = Zu_v(kT)z_k = Zz._" =14z 4724277+
k=0 k=0

=1/(1-27" 8.7 &

F@@)=z/(z—1) 83) §

Thus, the z-transform of the unit step function, us(kT), is z/(z — 1). (Note that
we have used the binomial series expansion in Eq. (8.7), given by (1 —x)™! = ‘
T+x+x2+x3+..). '

Example 8.2

Let us derive the z-transform of the function f(kT) = e~*7

the definition of the z-transform, Eq. (8.6), we can write

, where ¢t > 0. Using

0 oo
Fz) = Ze_asz“k = Z(ZC('T)'/‘ =1+ (ze*") 4 (ze*T) 2+ -
k=0 k=0

=1/[1 — (ze"H) " = z/(z — ze™T) (8.9)

Thus, z{e T} = z/(z — ze™T).

The z-transforms of other commonly used functions can be similarly obtained by
manipulating series expressions involving z, and are listed in Table 8.1.

Some important properties of the z-transform are listed below, and may be verified by
using the definition of the z-transform (Eq. (8.6)):

(a) Linearity:

Zlaf (kT)} = az{f(kT)} (8.10)
HfGKT) + fL(kT)} = 2l L(kT)} + 2{ f2(kT)} (8.11)
(b) Scaling in the z-plane:
2{e T F(kT)}) = F(e“T7) (8.12)
(c) Translation in time:
H{fKT +T)} =zF(2) —zf(07) (8.13)

where f(07) is the initial value of f(kT) for k = 0. Note that if f(kT) has a jump at
k=0 (such as f(kT) = uy(kT)), then f(07) is understood to be the value of f(kT)
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Table 8.1 Some commonly encountered z-fransforms

Discrete Time z-transform, F(z) Laplace Transform of

Function, f(kT) Equivalent Analog
Function, F(s)

us(kT) /(z=1) /s

kT Tz/(z —1)? 1/s?

e T /(z—eT) 1/(s +a)

I —e okl (1—e™T)/[(z = Nz —eT)] a/ls(s +a))

kTe—akT Tze‘“r/(: —eaT)? 1/(s + a)?

kT — (1 —e*Ty/q Tz/(z— 1?2 —z(1 —e™T)/la(z — 1)(z —e™T)] a/ls*(s + a)]

sin(akT) zsin(aT)/[z2 — 2z cos(aT) + 1] a/(s* +a®)

cos(akT) z[z — cos(aT))/[z% — 2z cos(aT) + 1] s/(s? +a?)

e~9*T §in(bkT) 22797 sin(bT)/[z% — 22797 cos(bT) — e 27T b/I(s + a)® + b?]

e~*T cos(bkT) 22— ze797 cos(bT))/[z2 — 2z cos(bT) — e 27T] s +a)/[(s +a)? + b?)

*T)" limg_,o(—1)"d" /da" [z/(z — e°T)] nt/snt!

before the jump. Thus, for f(kT) = u;(kT), f(07) = 0. A negative translation in time
is given by z{ f(kT — T)} = z7'F(2) + zf(07).

(d) Differentiation with z:
2kTf*T)} = —TzdF(2)/dz = —TzF"V(2) (8.14)

(e) Initial value theorem:
fOF) =1lim,, F(2) (8.15)

Equation (8.15) holds if and only if the said limit exists. Note that if f(kT) has a jump
at k = 0 (such as f(kT) = u (kT)), then f(0%) is understood to be the value of f(kT)
after the jump. Thus, for f(kT) = us(kT), f(07) = 1.

(f) Final value theorem:

f(oo) =lim. (1 —z7")F(2) (8.16)
Equation (8.16) holds if and only if the said limit exists. Using Table 8.1, and the prop-
erties of the z-transform, we can evaluate z-transforms of rather complicated functions.

Example 8.3

Let us find the z-transform of f(kT) = 10e~%7 sin(bkT — 2T). From Table 8.1,
we know that

z{sin(bkT)} = zsin(bT)/[z*> — 2z cos(bT) + 1] 8.17)

Then, using the linearity property of the z-transform given by Eq. (8.10), we can
write

z{10sin(bkT)} = 10z sin(bT)/[z*> — 2z cos(bT) + 1] (8.18)
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