(in Hertz) of the analog signal. This minimum value of the sampling rate is known as the *Nyquist sampling rate*.

It is clear from the above discussion that a successful implementation of a digital control system requires a *mathematical model* for the A/D converter. Since A/D converter is based on *two* distinct processes – *sampling* and *holding* – such a model must include separate models for both of these processes. As with continuous time systems, we can obtain the mathematical model for A/D converter in either *frequency domain* (using transform methods and transfer function), or in the *time domain* (using a state-space representation). We begin with the frequency domain modeling and analysis of single-input, single-output digital systems.

8.2 A/D Conversion and the z-Transform

The simplest model for the sampling process of the A/D converter is a switch which repeatedly closes for a very short duration, t_w , after every T seconds, where 1/T is the sampling rate of the analog input, f(t). The output of such a switch would consist of series of pulses separated by T seconds. The width of each pulse is the duration, t_w , for which the switch remains closed. If t_w is very small in comparison to T, we can assume that f(t) remains constant during each pulse (i.e. the pulses are rectangular). Thus, the height of the kth pulse is the value of the analog input f(t) at t = kT, i.e. f(kT). If t_w is very small, the kth pulse can be approximated by a unit impulse, $\delta(t - kT)$, scaled by the area $f(kT)t_w$. Thus, we can use Eq. (2.35) for approximating f(t) by a series of impulses (as shown in Figure 2.16) with $\tau = kT$ and $\Delta \tau = t_w$, and write the following expression for the sampled signal, $f_{tw}^*(t)$:

$$f_{tw}^{*}(t) = \sum_{k=0}^{\infty} f(kT)t_{w}\delta(t - kT) = t_{w} \sum_{k=0}^{\infty} f(kT)\delta(t - kT)$$
 (8.1)

Equation (8.1) denotes the fact that the sampled signal, $f_{tw}^*(t)$, is obtained by sampling f(t) at the sampling rate, 1/T, with pulses of duration t_w . The *ideal sampler* is regarded as the sampler which produces a series of impulses, $f^*(t)$, weighted by the input value, f(kT) as follows:

$$f^*(t) = \sum_{k=0}^{\infty} f(kT)\delta(t - kT)$$
(8.2)

Clearly, the *ideal sampler* output, $f^*(t)$, does not depend upon t_w , which is regarded as a *characteristic* of the *real sampler* described by Eq. (8.1). The ideal sampler is thus a real sampler with $t_w = 1$ second.

Since the sampling process gives a non-zero value of $f^*(t)$ only for the duration for which the switch remains closed, there are repeated gaps in $f^*(t)$ of approximately T seconds, in which $f^*(t)$ is zero. The holding process is an interpolation of the sampled input, $f^*(t)$, in each time interval, T, so that the gaps are filled. The simplest holding process is the zero-order hold (z.o.h.), which holds the input constant over each time interval, T (i.e. applies a zero-order interpolation to $f^*(t)$). As a result,

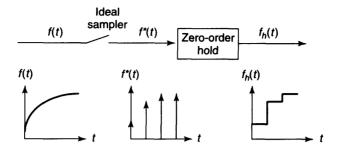


Figure 8.2 Schematic diagram and input, sampled, and output signals of an analog-to-digital (A/D) converter with an ideal sampler and a zero-order hold

the held input, $f_h(t)$, has a staircase time plot. A block diagram of the *ideal sampling* and *holding* processes with a zero-order hold, and their input and output signals, are shown in Figure 8.2.

Since the input to the z.o.h. is a series of impulses, $f^*(t)$, while the output, $f_h(t)$, is a series of steps with amplitude f(kT), it follows that the *impulse response*, h(t), of the z.o.h. must be a *step* that starts at t = 0 and ends at t = T, and is represented as follows:

$$h(t) = u_s(t) - u_s(t - T)$$
 (8.3)

or, taking the Laplace transform of Eq. (8.2), the transfer function of the z.o.h. is given by

$$G(s) = (1 - e^{-Ts})/s$$
 (8.4)

Note that we have used a special property of the Laplace transform in Eq. (8.3) called the *time-shift property*, which is denoted by $\mathcal{L}[y(t-T)] = e^{-Ts}\mathcal{L}[y(t)]$. Similarly, taking the Laplace transform of Eq. (8.2), we can write the Laplace transform of the ideally sampled signal, $F^*(s)$, as follows:

$$F^*(s) = \sum_{k=0}^{\infty} f(kT) e^{-kTs}$$
 (8.5)

If we define a variable z such that $z = e^{Ts}$, we can write Eq. (8.5) as follows:

$$F(z) = \sum_{k=0}^{\infty} f(kT)z^{-k}$$
 (8.6)

In Eq. (8.6), F(z) is called the z-transform of f(kT), and is denoted by $z\{f(kT)\}$. The z-transform is more useful in studying digital systems than the Laplace transform, because the former incorporates the sampling interval, T, which is a characteristic of digital systems. The expressions for digital transfer functions in terms of the z-transform are easier to manipulate, as they are free from the time-shift factor, e^{-Ts} , of the Laplace transform. In a manner similar to the Laplace transform, we can derive z-transforms of some frequently encountered functions.

Example 8.1

Let us derive the z-transform of $f(kT) = u_s(kT)$, the unit step function. Using the definition of the z-transform, Eq. (8.6), we can write

$$F(z) = \sum_{k=0}^{\infty} u_s(kT) z^{-k} = \sum_{k=0}^{\infty} z^{-k} = 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$

$$= 1/(1 - z^{-1})$$
(8.7)

or

$$F(z) = z/(z-1) (8.8)$$

Thus, the z-transform of the unit step function, $u_s(kT)$, is z/(z-1). (Note that we have used the *binomial series expansion* in Eq. (8.7), given by $(1-x)^{-1} = 1 + x + x^2 + x^3 + ...$).

Example 8.2

Let us derive the z-transform of the function $f(kT) = e^{-akT}$, where $t \ge 0$. Using the definition of the z-transform, Eq. (8.6), we can write

$$F(z) = \sum_{k=0}^{\infty} e^{-akT} z^{-k} = \sum_{k=0}^{\infty} (ze^{aT})^{-k} = 1 + (ze^{aT})^{-1} + (ze^{aT})^{-2} + \cdots$$
$$= 1/[1 - (ze^{aT})^{-1}] = z/(z - ze^{-aT})$$
(8.9)

Thus, $z\{e^{-akT}\} = z/(z - ze^{-aT})$.

The z-transforms of other commonly used functions can be similarly obtained by manipulating series expressions involving z, and are listed in Table 8.1.

Some important properties of the z-transform are listed below, and may be verified by using the definition of the z-transform (Eq. (8.6)):

(a) Linearity:

$$z\{af(kT)\} = az\{f(kT)\}$$
 (8.10)

$$z\{f_1(kT) + f_2(kT)\} = z\{f_1(kT)\} + z\{f_2(kT)\}$$
(8.11)

(b) Scaling in the z-plane:

$$z\{e^{-akT}f(kT)\} = F(e^{aT}z)$$
 (8.12)

(c) Translation in time:

$$z\{f(kT+T)\} = zF(z) - zf(0^{-})$$
(8.13)

where $f(0^-)$ is the *initial value* of f(kT) for k = 0. Note that if f(kT) has a *jump* at k = 0 (such as $f(kT) = u_s(kT)$), then $f(0^-)$ is *understood* to be the value of f(kT)

Discrete Time Function, $f(kT)$	z-transform, $F(z)$	Laplace Transform of Equivalent Analog Function, $F(s)$
$u_s(kT)$	z/(z-1)	1/s
kT	$Tz/(z-1)^2$	$1/s^2$
e^{-akT}	$z/(z-e^{-aT})$	1/(s+a)
$1 - e^{-akT}$	$z(1 - e^{-aT})/[(z - 1)(z - e^{-aT})]$	a/[s(s+a)]
kTe^{-akT}	$Tze^{-aT}/(z-e^{-aT})^2$	$1/(s+a)^2$
$kT - (1 - \mathrm{e}^{-akT})/a$	$Tz/(z-1)^2 - z(1-e^{-aT})/[a(z-1)(z-e^{-aT})]$	$a/[s^2(s+a)]$
sin(akT)	$z\sin(aT)/[z^2-2z\cos(aT)+1]$	$a/(s^2+a^2)$
cos(akT)	$z[z - \cos(aT)]/[z^2 - 2z\cos(aT) + 1]$	$s/(s^2+a^2)$
$e^{-akT}\sin(bkT)$	$ze^{-aT}\sin(bT)/[z^2-2ze^{-aT}\cos(bT)-e^{-2aT}]$	$b/[(s+a)^2+b^2]$
$e^{-akT}\cos(bkT)$	$[z^2 - ze^{-aT}\cos(bT)]/[z^2 - 2ze^{-aT}\cos(bT) - e^{-2aT}]$	$(s+a)/[(s+a)^2+b^2]$
$(kT)^n$	$\lim_{a\to 0} (-1)^n d^n / da^n [z/(z - e^{-aT})]$	$n!/s^{n+1}$

Table 8.1 Some commonly encountered z-transforms

before the jump. Thus, for $f(kT) = u_s(kT)$, $f(0^-) = 0$. A negative translation in time is given by $z\{f(kT-T)\} = z^{-1}F(z) + zf(0^-)$.

(d) Differentiation with z:

$$z\{kTf(kT)\} = -TzdF(z)/dz = -TzF^{(1)}(z)$$
(8.14)

(e) Initial value theorem:

$$f(0^+) = \lim_{z \to \infty} F(z) \tag{8.15}$$

Equation (8.15) holds if and only if the said limit exists. Note that if f(kT) has a jump at k = 0 (such as $f(kT) = u_s(kT)$), then $f(0^+)$ is understood to be the value of f(kT) after the jump. Thus, for $f(kT) = u_s(kT)$, $f(0^+) = 1$.

(f) Final value theorem:

$$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$$
 (8.16)

Equation (8.16) holds if and only if the said limit exists. Using Table 8.1, and the properties of the z-transform, we can evaluate z-transforms of rather complicated functions.

Example 8.3

Let us find the z-transform of $f(kT) = 10e^{-akT}\sin(bkT - 2T)$. From Table 8.1, we know that

$$z\{\sin(bkT)\} = z\sin(bT)/[z^2 - 2z\cos(bT) + 1]$$
 (8.17)

Then, using the linearity property of the z-transform given by Eq. (8.10), we can write

$$z\{10\sin(bkT)\} = 10z\sin(bT)/[z^2 - 2z\cos(bT) + 1]$$
 (8.18)