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PULSE TRANSFER FUNCTIONS OF SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS 379

Furthermore, the scaling in the z-plane given by Eq. (8.12) yields

2{10e™*7 sin(bkT)} = 10ze7 sin(bT)/[z%e**T — 2ze*T cos(bT) + 1] (8.19)
Finally, the translation in time given by Eq. (8.13) yields (noting that 10e"
sin(0) = 0)

2{10e~ 7 sin(bkT — 2T)} = 10z "7 sin(bT)/[2%e*T — 2ze"7 cos(bT) + 1]
(8.20)

8.3 Pulse Transfer Functions of Single-Input,
Single-Output Systems

In a manner similar to the transfer function in Laplace domain for a single-input,
single-output analog system, we can define a pulse transfer function for a single-input,
single-output digital system in the z-domain as the z-transform of the outpur signal
divided by the z-transform of the input signal. Finding the pulse transfer functions of
digital systems in the z-domain is a useful application of the z-transform. However, before
finding the pulse transfer function of a digital system, we must distinguish between an
inherently digital system, and an analog system rendered digital due to the process of data
sampling, as shown in Figure 8.3. It is clear from Figure 8.3 that while an inherently
digital system would always produce a discrete time output, an analog system would
produce a continuous time output, even though the input is a digitally sampled signal
(recall the continuous time outputs to impulse inputs of analog systems calculated in
Chapters 2 and 4).

Finding an inherently digital system’s pulse transfer function is straightforward,
because both input and output are discrete time signals with the same interval, 7. On
the other hand, taking the z-transform of the transfer function, G(s), of a sampled-data
analog system — in which the input is discrete with a sampling interval, T, while the
output is a continuous time signal — is quite problematic. However, if we assume that
we are only interested in finding the output of a sampled-data analog system at the same
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Figure 8.3 Block diagrams of an inherently digital system and a sampled-data analog system rendered
digital by an imaginary sampler at the output
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380 DIGITAL CONTROL SYSTEMS

discrete time points at which the input is sampled, the difficulty in finding the transfer
function in the z-domain can be removed. By making such an assumption, we would be
disregarding the continuous nature of the output of a sampled-data analog system, and
treat the system as if it’s output is sampled by an imaginary sampler. By having such
an imaginary sampler at the output, the sampled-data analog system effectively becomes
an inherently digital system. The ideally sampled input of an analog system is given by
Eq. (8.2) as follows:

e <]

w*(t) =Y u(nT)s(t —nT) (8.21)

n=0

The continuous time output, y(t), is given by the discretized convolution integral of
Eq. (2.119) as follows:

oC

y(t) = Zu(nT)g(t —nT) (8.22)

n=0

where g(t — nT) is the impulse response of the analog system to a unit impulse applied at
time ¢t = nT. The digitized output, y*(¢), resulting from sampling of y(¢) by an imaginary
sampler shown in Figure 8.3, with the same sampling interval, T, as that of the input,
u*(t), can be written as follows:

o
Y (t) = y(kT) =Y u(nT)gkT - nT) (8.23)
n=0
Then, the z-transform of the (imaginary) sampled output, y*(¢) = y(kT), can be written as
[o < INv o)
Y(2) = z{y(kD)} = )Y u(nT)gkT —nT)z ™ (8.24)
k=0 n=0

or, expressing the double summation as a product of two summations,

Y@ =Y gkT —nT)z™**" Y unT)z™" (8.25)
k=0 n=0

Since g(kT — nT) = 0 for k < n, we can begin the first summation in Eq. (8.25)atk =n
instead of k = 0, and defining m = k — n, we can write

Y(@) =) gmT)z™ ) u(nT)z™" (8.26)
m=0 =0

or, recognizing the second summation of Eq. (8.26) as the z-transform of the input, U (z),

Y(z) = LZ g(mT)z"":| U@ (8.27)

=0

EBSCChost - printed on 10/27/2025 6:10 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of -use



EBSCOhost -

PULSE TRANSFER FUNCTIONS OF SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS 381

Comparing Eq. (8.27) with the definition of the pulse transfer function, G(z) = Y (z)/ U (z).
we can write the pulse transfer function of a sampled-data analog system as follows:

G)=) gmT)z™" (8.28)

m=0

Equation (8.28) indicates that the pulse transfer function of a sampled-data analog system
is the z-transform of the digitized impulse response, g(mT). This is an important result,
which shows that although the output, y(¢), of a sampled-data analog system is conti-
nuous in time, by having an imaginary sampler at the output (Figure 8.3), the analog
system essentially becomes a digital system with the pulse transfer function, G(z). Since
the impulse response, g(¢), of the analog system is the inverse Laplace transform of its
transfer function, G(s), we can directly obtain G(z) from G(s) by using Table 8.1, and
denote G(z) by the convenient notation, G(z) = z{G(s)}.

Example 8.4

Let us find the pulse transfer function of the z.o.h. The transfer function of z.0.h :'f
is given by Eq. (8.4) as G(s) = (1 —eT%)/s. We can express G(s) as G(s) =
1/s —e~ /s, and write .

G(z) = z{1/s} — z{e" % /s} (8.29) &
From Table 8.1, we note that
dl/s)=2/(z— 1) 8.30) @

Furthermore, note that e~7*/s is the Laplace transform of u(t — T). Therefore,
using the time-shift property of the z-transform given by Eq. (8.13), we can write

zle /sy = z{us kT ~T)y = 27" Zfus kT)y = 1/(z = 1) (8.31)

Substituting Egs. (8.30) and (8.31) into Eq. (8.29), we can write the pulse-transfer [
function of the z.0.h as follows:

G@ =2/~ -1/c-D=G-D/c-D=1 3.32) §

Thus, the pulse transfer function of the z.0.h is unity.

Example 8.5

Let us find the pulse transfer function of a sampled-data analog system obtained by
placing the z.0.h in series with an analog system with transfer function G(s) =
5/(s* + 1). The overall transfer function of the resulting sampled-data analog system
is written as

G)=Gi()(1—e ™)y s =1 —e ) /(s*+ 1) (8.33)
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382 DIGITAL CONTROL SYSTEMS

For finding the pulse transfer function, G(z), we first express G(s) as follows:
G(is)=1/G*+ D) —e T /(s + 1) (8.34)

Note that 1/(s2+1) is the Laplace transform of sin(kT'). Furthermore, e 7 /(s +1)
is the Laplace transform of sin(kT — T'). Hence, using the time-shift property of
the z-transform and Eq. (8.34), we can write

G(z) = z{sin(kT)} — z7" - z{sinkT)} = (1 — z7") - z{sin(kT)} (8.35)
or, using Table 8.1,

G(z) = (1 — z7Hzsin(T)/[22 — 2zcos(T) + 1]
= (z — 1) sin(T)/[z® = 2zcos(T) + 1] (8.36)

Examples 8.4 and 8.5 indicate that we can obtain the pulse transfer function of a
general sampled-data analog system consisting of the z.o.h in series with a system
with proper transfer function, G(s), by expressing the overall transfer function as
G(s) = (1 — e~ T%)[G,(s)/s]. Then, using the time-shift property of the z-transform, and
noting that s,(t) = L7'[G(s)/s] is the step response of the system, G (s), with s(07) =
0, we can write the pulse transfer function, G(z), as follows:

G =0-z"2{G\(s)/s} = (0 = 27" - z{s1 (kT)} (8.37)

In Chapter 2, we learnt how to calculate the step response, s;(t), of a proper transfer
function, G (s), using the partial fraction expansion of G(s)/s, either by hand, or by the
M-file stepresp.m. Note that in the M-file stepresp.m, the step response, s, (t), is essentially
computed at discrete time points, with time interval, dt = T. Hence, stepresp.m gives us
the digitized step response, sy(kT), which can be thought of as the result of sampling s, (1)
by an imaginary sampler (Figure 8.3) with a specified sampling interval, T. If only we
can compute the z-transform of a discrete time signal, s;(kT), by an appropriate M-file,
we will have all the necessary tools to compute the pulse transfer function of a general
sampled-data system. For the moment, let us confine ourselves to hand calculation of the
pulse transfer function.

Example 8.6

Let us find the pulse transfer function of the sampled-data analog system consisting
of an A/D converter with z.0.h in closed-loop with an analog plant of transfer
function, G| (s), as shown in Figure 8.4(a), if G (s) = (s + 1)/[(s + 2)(s + 3)].
To find the pulse transfer function of the closed-loop sampled-data analog system,
G(z) = Y(2)/Y4(z), we have to express the block diagram of the system in such
a way that both y(r) and y4(¢) are digital signals. This is done in Figure 8.4(b)
by moving the sampler at the input of z.0.h to outside the feedback loop before
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Figure 8.4 Two equivalent block diagrams of closed-loop sampled-data analog system with
zero-order hold and analog plant, Gi (s)

the summing junction, as well as placing an imaginary sampler in the feedback
loop. In doing so, we are not changing the essential characteristic of the closed-loop
system. Hence, the block-diagrams shown in Figures 8.4(a) and (b) are equivalent.
The open-loop transfer function of the system is given by

Gols) = (1 —e™™)G(5)/s (8.38) &

The pulse transfer function of the closed-loop system is given by
G(2) = Y(z2)/ Ya(z). From the block-diagram of Figure 8.4(b) it is clear that e*(¢) =
yi () — y*(t), or, taking the z-transform, E(z) = Y4(2) — Y (z). Furthermore, the
open-loop pulse transfer function is z{G,(s)} = G,(z) = Y(2)/E(z). Therefore,
the closed-loop pulse transfer function is G(z) = Y (z)/Y4(z) = Go(2)/[1 + Go(2)],
where G(z) is the pulse transfer function of the open-loop system. We can calculate
G,(z) by finding the z-transform of G,(s) by Eq. (8.37) as follows:

Go(2) = 2{Go(s)} = (I = 271) - 2{G ) (5)/s) (8.39) §
where :
2{Gi(s)/s} = z{1/(6s) + 1/[2(s +2)] = 2/[3(s + 3) ]} |
=2/[6(z —~ D] +2/[2z =] = 22/B(z —e )] (8.40) §

Substituting Eq. (8.40) into Eq. (8.39) and simplifying, we get
Go(2) = [z(0 + 372 —4e™T) 4+ &7 4 377
—4e7 T /[6(z —e )z —e )] ®41) §
Finally, the pulse transfer function of the closed-loop system is obtained as follows: &

G(2) = Go(2)/[1+ Go(2)]

= [z(1 +3e72" —4e73T) 45T £ 3T —4e~TY/[6(z — e 2T )(z — e T
+z(1 43¢ —4e™ ) 477 43¢ — de™) (8.42) B
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