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384 DIGITAL CONTROL SYSTEMS

Examples 8.5 and 8.6 show that finding the pulse transfer functions of sampled-data
analog systems requires converting the system into an equivalent system in which both
output and input appear to be digital signals by appropriate placement of samplers. In
doing so, care must be exercised that the characteristics of the system are unchanged.
It is clear that the pulse transfer function of a general sampled-data analog system
consisting of several analog sub-systems cannot be handled in the same manner as the
transfer function of an analog system. For example, the pulse transfer function, G(z), of a
sampled-data analog system consisting of two analog sub-systems with transfer functions
G (s) and G>(s) in series cannot be written as G(z) = G(z)G2(z), but only as G(z) =
2{G1(s)G2(s)}. This is due to the fact that, generally, z{G(s)G2(s)} # G1(2)G2(2).
However, if we are dealing with a digital system consisting of digital sub-systems, the
pulse transfer functions of the sub-systems are handled in precisely the same manner as
the transfer functions of analog sub-systems systems. For example, the pulse transfer
function of a digital system consisting of two digital sub-systems with pulse transfer
functions G(z) and G,(z) in series is merely G(z) = G1(z2)G32(z). All of this shows
us that we must be extremely careful in deriving the pulse transfer functions. It always
helps to write down the input-output relationships (such as in Example 8.6) of the various
sub-systems as separate equations, and then derive the overall input-output relationship
from those equations.

8.4 Frequency Response of Single-input, Single-Output
Digital Systems

In a manner similar to an analog system with transfer function, G(s), whose frequency
response is the value of G(s) when s = iw, we can define the frequency response of a
digital system with a pulse transfer function, G(z), as the value of G(z) when z = elel
or G(e'“T). In so doing, we can plot the gain and phase of the frequency response,
G(e'“T), as functions of the frequency, w, somewhat like the Bode plots of an analog
system. However, the digital Bode plots crucially depend upon the sampling interval,
T. For instance, the gain, |G(e*“T)|, would become infinite for some values of w7 . The
frequency response of a digital system is related to the steady-state response to a harmonic
input, provided the system is stable (i.e. its harmonic response at large time exists and is
finite). The sampling rate of a harmonic output is crucial in obtaining the digital system’s
frequency response. If a high-frequency signal is sampled at a rate smaller than the signal
frequency, then a large distortion and ambiguity occur in the sampled data. For example,
if we sample two very different harmonic signals, say sin(0.257¢/T) and sin(1.757¢/T),
with the same sampling interval, T, then the two sampled data would be identical. In other
words, we lose information about the higher frequency signal by sampling it at a lower
rate. This important phenomenon of sampled-data analog systems is known as aliasing.
To avoid aliasing, the sampling rate must be at least twice the signal’s bandwidth, wy (i.e.
the largest frequency contained in the signal). The minimum acceptable sampling rate is
called the Nyquist frequency. The Nyquist frequency in rad/s is thus given by half the
required sampling rate, i.e. 2 /T = 2wy, or 7/ T = wy, where T is the sampling interval.
Hence, the frequency response of a digital system with a given sampling interval, T, is
usually calculated only for w < m/T.
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MATLAB’s Control System Toolbox (CST) provides the command dbode for
computing the frequency response of a digital system, and is used as follows:

>>[mag,phase,w] = dbode(num,den,T) <enter>

where num and den are the numerator and denominator polynomials of the system’s
pulse transfer function, G(z), in decreasing powers of z, T is the sampling interval, mag
and phase are the returned magnitude and phase (degrees), respectively, of the computed
frequency response, G(e'“T), and w is the vector of discrete frequency points (upto the
Nyquist frequency) at which the frequency response is computed. The user can optionally
specify the desired frequency points as the fourth input argument of the command dbode.
When used without the output arguments on the left-hand side, dbode produces the digital
Bode plots on the screen.

Example 8.7

Let us find the frequency response of a digital system with pulse transfer function,
G(z) = z/(z* +2), and sampling interval, 7 = 0.1 second. To get the magnitude
and phase of the frequency response, we can use the command dbode as follows:

>>pum = [1 0];den = [1 0 2};dbode(num,den,0.1) <enter>

The resulting digital Bode magnitude and phase plots are shown in Figure 8.5.
Note that the Nyquist frequency is /T = 31.4159 rad/s, indicated as the highest
frequency in Figure 8.5 at which the frequency response is plotted. At the Nyquist
frequency, the phase is seen to approach 180°. There is a peak in the gain plot
at @ = 15.7 rad/s at which the gain is 0 dB and the phase is 90°. A gain of 0 dB §

0 T T T

Gain (dB)

100 10' 102
Frequency (rad/s)

180F- - NS S OIS .

(10 SRRRERERE :A ..... E:,‘

Phase (deg.)

10° 10! 102
Frequency (rad/s)

Figure 8.5 Digital Bode plot of the pulse transfer function, G(z) = z/(2% + 2) with a sampling §
interval, T = 0.1 second
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