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corresponds to \G(eiwT)\ = 1, or \eia>T/(e2iwT + 2)| = 1, which is seen in Figure 8.5
to occur at coT = 1.5708 = n/2. Thus, the value of z at which to 0 dB and the phase
is 90° is z = e/7r/2 = i, and the corresponding value of G(z) = G(i') = i. Note that
both Nyquist frequency, u> = n/T, and the frequency, co = n/(2T), at which the
gain peaks to 0 dB with phase 90°, will be modified if we change the sampling
interval, T.

8.5 Stability of Single-Input, Single-Output
Digital Systems

The non-zero sampling interval, T, of digital systems crucially affects their stability. In
Chapter 2, we saw how the location of poles of an analog system (i.e. roots of the denom-
inator polynomial of transfer function, G(s)) determined the system's stability. If none
of the poles lie in the right-half s-plane, then the system is stable. It would be inter-
esting to find out what is the appropriate location of a digital system's poles - defined
as the roots of the denominator polynomial of the pulse transfer function, G(z) - for
stability. Let us consider a mapping (or transformation) of the Laplace domain on
to the z-plane. Such a mapping is defined by the transformation, z = ers. The region
of instability, namely the right-half s-plane, can be denoted by expressing s = a + ia),
where a > 0. The corresponding region in the z-plane can be obtained by z = e(a+lw)T =
eaTela}T = eaT[cos(a>T) + / sin(&>r)], where a > 0. Note that a line with a = constant
in the s-plane corresponds to a circle z = eaT[cos(a)T) + i sin(o>r)] in the z-plane of
radius eaT centered at z = 0. Thus, a line with or = constant in the right-half s-plane
(a > 0) corresponds to a circle in the z-plane of radius larger than unity (eaT > 1). In
other words, the right-half s-plane corresponds to the region outside a unit circle centered
at the origin in the z-plane. Therefore, stability of a digital system with pulse transfer
function, G(z), is determined by the location of the poles of G(z) with respect to the
unit circle in the z-plane. If any pole of G(z) is located outside the unit circle, then the
system is unstable. If all the poles of G(z) lie inside the unit circle, then the system is
asymptotically stable. If some poles lie on the unit circle, then the system is stable, but not
asymptotically stable. If poles on the unit circle are repeated, then the system is unstable.

Example 8.8

Let us analyze the stability of a digital system with pulse transfer function, G(z) =
z/[(z — e~r)(z2 + 1)], if the sampling interval is T = 0.1 second. The poles of G(z)
are given by z = e"r, and z = ±i. With T = 0.1 s, the poles are z = e~° ' = 0.9048,
and z = ±i. Since none of the poles of the system lie outside the unit circle centered
at z = 0, the system is stable. However, the poles z = ±i are on the unit circle.
Therefore, the system is not asymptotically stable. Even if the sampling interval,
T, is made very small, the pole at z = e~r will approach - but remain inside - the
unit circle. Hence, this system is stable for all possible values of the sampling
interval, T.
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Example 8.9

Let us find the range of sampling interval, T, for which the digital system with
pulse transfer function, G(z) = 100/(z2 - 5e~7 +4), is stable. The poles of G(z)
are given by the solution of the characteristic equation z2 — 5e~r + 4 = 0, or
z = ±(5e~r - 4)1/2. If T > 0.51, then |z| > 1.0, indicating instability. Hence, the
system is stable for T < 0.51 second.

Example 8.10

A sampled-data closed-loop system shown in Figure 8.4 has a plant transfer function,
d(s) = s/(s2 + 1). Let us find the range of sampling interval, 7", for which the
closed-loop system is stable.

In Example 8.6, we derived the pulse transfer function of the closed-loop system
to be the following:

G(z) = [z(l + 3e~2;r - 4e~3T) + e~5:r + 3e~3;r - 4e~2T]/[6(z - e~27")(z - e~3r)

+ z(l + 3e"2r - 4e~37) + e"5r + 3e~3r - 4e~2r] (8.43)

The closed-loop poles are the roots of the following characteristic polynomial:

6(z - e~27)(z - e~3r) + z(l + 3e~~2r - 4e~3r) + e~5T

+ 3e-3r - 4e~2r = 0 (8.44)

or

6z2 + z(l - 3e"2r - 10e"3r) + 7e"57 + 3e~3r - 4e~2r = 0 (8.45)

An easy way of solving Eq. (8.45) is through the MATLAB command roots as
follows:

»T=0.0001;z=roots([6 1 -3*exp( -2*T) -10*exp( -3*T) 7*exp( -5*T)+3*exp( -3
* T ) - 4 * e x p ( - 2 * T ) ] ) <enter>

7 —

0 . 9998
0.9996

Since the poles of G(z) approach the unit circle only in the limit T -> 0, it is clear
that the system is stable for all non-zero values of the sampling interval, T.

In a manner similar to stability analysis of the closed-loop analog, single-input, single-
output system shown in Figure 2.32 using the Nyquist plot of the open-loop transfer
function, G0(s) = G(s)H(s), we can obtain the Nyquist plots of closed-loop digital
systems with an open-loop pulse transfer function, G0(z), using the MATLAB (CST)
command dnyquist as follows:

»dnyquist(num,den,T) <enter>
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where num. and den are the numerator and denominator polynomials of the system's open-
loop pulse transfer function, G0(z), in decreasing powers of z, and T is the sampling
interval. The result is a Nyquist plot (i.e. mapping of the imaginary axis of the Laplace
domain in the G0(z) plane) on the screen. The user can supply a vector of desired
frequency points, w, at which the Nyquist plot is to be obtained, as the fourth input
argument of the command dnyquist. The command dnyquist obtains the Nyquist plot of
the digital system in the G0(z) plane. Hence, the stability analysis is carried out in exactly
the same manner as for analog systems, using the Nyquist stability theorem of Chapter 2.
According to the Nyquist stability theorem for digital systems, the closed-loop system
given by the pulse transfer function, G0(z)/[l + G0(z)], is stable if the Nyquist plot of
G0(z) encircles the point —1 exactly P times in the anti-clockwise direction, where P is
the number of unstable poles of G0(z).

Example 8.11

Let us use the digital Nyquist plot to analyze the stability of the closed-loop sampled
data analog system shown in Figure 8.4 with the plant, G\(s) — l/[(s(s + 1)]. The
open-loop transfer function of the system is G0(s) = (1 — e~Ts)/[s2(s + 1)], while
the open-loop pulse transfer function can be written as follows:

~T '7"G0(z) = [z(T - 1 + e-) + 1 - e- - T e ~ ] / ( ( z - l)(z - e ' ) ] (8.46)

For a specific value of the sampling interval, such as T = 0. 1 second, the Nyquist
plot is obtained as follows:

»T=0.1;num = [T-H-exp(-T) 1 -exp( -T) -T*exp( -T) ] ,den = conv([1
-1] , [1 -exp ( -T ) ] ) <enter>

num =
0 . 0048 0 . 0047

den =
1 . 0000 - 1 . 9048 0 . 9048

The poles of G0(z) are obtained as follows:

»roots(den) <enter>

ans =
1.0000
0 . 9048

Thus, G0(z) does not have any poles outside the unit circle, hence P = 0. The
digital Nyquist plot is obtained in the frequency range 1-10 rad/s as follows:

»w=logspace(0, 1 ) ; dnyquist (num,den,T,w) <enter>

The resulting Nyquist plot is shown in Figure 8.6. Note that the Nyquist plot
of G0(z) does not encircle the point —1 in the G0(z) plane. Hence, the closed-
loop system with pulse transfer function, G0(z)/[l + G0(z)], is stable for T = 0.1
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Figure 8.6 Digital Nyquist plot of open-loop pulse transfer function, G0 (z), for the sampled-data
closed-loop system of Example 8.10 with sampling interval 7 = 0.1 s

second. We can also analyze the stability of the closed-loop system by checking the
closed-loop pole locations as follows:

»sysp=tf(num,den);sysCL=feedback(sysp,1) <enter>

Transfer function:
0.004837Z+0.004679

ZA2-1.9Z+0.9095

»[wn,z,p]=damp(sysCL); wn, p <enter>

wn =
0.9537
0.9537

p=
0.9500+0.08381
0.9500-0.08381

Note that the returned arguments of the CST command damp denote the closed-
loop poles, p, and the magnitudes of the closed-loop poles, wn. (Caution: z and
wn do not indicate the digital system's damping and natural frequencies, for which
you should use the command ddamp as shown below.) Since wn indicates that both
the closed-loop poles are inside the unit circle, the closed-loop system is stable.
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