corresponds to $|G(e^{i\omega T})| = 1$, or $|e^{i\omega T}/(e^{2i\omega T} + 2)| = 1$, which is seen in Figure 8.5 to occur at $\omega T = 1.5708 = \pi/2$. Thus, the value of z at which to 0 dB and the phase is 90° is $z = e^{i\pi/2} = i$, and the corresponding value of G(z) = G(i) = i. Note that both Nyquist frequency, $\omega = \pi/T$, and the frequency, $\omega = \pi/(2T)$, at which the gain peaks to 0 dB with phase 90°, will be modified if we change the sampling interval. T.

8.5 Stability of Single-Input, Single-Output Digital Systems

The non-zero sampling interval, T, of digital systems crucially affects their stability. In Chapter 2, we saw how the location of poles of an analog system (i.e. roots of the denominator polynomial of transfer function, G(s) determined the system's stability. If none of the poles lie in the right-half s-plane, then the system is stable. It would be interesting to find out what is the appropriate location of a digital system's poles - defined as the roots of the denominator polynomial of the pulse transfer function, G(z) - for stability. Let us consider a mapping (or transformation) of the Laplace domain on to the z-plane. Such a mapping is defined by the transformation, $z = e^{Ts}$. The region of instability, namely the right-half s-plane, can be denoted by expressing $s = \alpha + i\omega$, where $\alpha > 0$. The corresponding region in the z-plane can be obtained by $z = e^{(\alpha + i\omega)T} =$ $e^{\alpha T}e^{i\omega T} = e^{\alpha T}[\cos(\omega T) + i\sin(\omega T)]$, where $\alpha > 0$. Note that a line with $\alpha = \text{constant}$ in the s-plane corresponds to a circle $z = e^{\alpha T} [\cos(\omega T) + i \sin(\omega T)]$ in the z-plane of radius $e^{\alpha T}$ centered at z=0. Thus, a line with $\alpha=$ constant in the right-half s-plane $(\alpha > 0)$ corresponds to a circle in the z-plane of radius larger than unity $(e^{\alpha T} > 1)$. In other words, the right-half s-plane corresponds to the region outside a unit circle centered at the origin in the z-plane. Therefore, stability of a digital system with pulse transfer function, G(z), is determined by the location of the poles of G(z) with respect to the unit circle in the z-plane. If any pole of G(z) is located *outside* the unit circle, then the system is *unstable*. If all the poles of G(z) lie *inside* the unit circle, then the system is asymptotically stable. If some poles lie on the unit circle, then the system is stable, but not asymptotically stable. If poles on the unit circle are repeated, then the system is unstable.

Example 8.8

Let us analyze the stability of a digital system with pulse transfer function, $G(z) = z/[(z - e^{-T})(z^2 + 1)]$, if the sampling interval is T = 0.1 second. The poles of G(z) are given by $z = e^{-T}$, and $z = \pm i$. With T = 0.1 s, the poles are $z = e^{-0.1} = 0.9048$, and $z = \pm i$. Since none of the poles of the system lie outside the unit circle centered at z = 0, the system is *stable*. However, the poles $z = \pm i$ are on the unit circle. Therefore, the system is not asymptotically stable. Even if the sampling interval, T, is made very small, the pole at $z = e^{-T}$ will approach – but remain inside – the unit circle. Hence, this system is stable for all possible values of the sampling interval, T.

Example 8.9

Let us find the *range* of sampling interval, T, for which the digital system with pulse transfer function, $G(z) = 100/(z^2 - 5e^{-T} + 4)$, is stable. The poles of G(z) are given by the solution of the characteristic equation $z^2 - 5e^{-T} + 4 = 0$, or $z = \pm (5e^{-T} - 4)^{1/2}$. If T > 0.51, then |z| > 1.0, indicating instability. Hence, the system is stable for $T \le 0.51$ second.

Example 8.10

A sampled-data closed-loop system shown in Figure 8.4 has a plant transfer function, $G_1(s) = s/(s^2 + 1)$. Let us find the range of sampling interval, T, for which the closed-loop system is stable.

In Example 8.6, we derived the pulse transfer function of the closed-loop system to be the following:

$$G(z) = \left[z(1+3e^{-2T}-4e^{-3T}) + e^{-5T} + 3e^{-3T} - 4e^{-2T}\right] / [6(z-e^{-2T})(z-e^{-3T})$$

$$+ z(1+3e^{-2T}-4e^{-3T}) + e^{-5T} + 3e^{-3T} - 4e^{-2T}]$$
(8.43)

The closed-loop poles are the roots of the following characteristic polynomial:

$$6(z - e^{-2T})(z - e^{-3T}) + z(1 + 3e^{-2T} - 4e^{-3T}) + e^{-5T}$$

+ $3e^{-3T} - 4e^{-2T} = 0$ (8.44)

or

$$6z^{2} + z(1 - 3e^{-2T} - 10e^{-3T}) + 7e^{-5T} + 3e^{-3T} - 4e^{-2T} = 0$$
 (8.45)

An easy way of solving Eq. (8.45) is through the MATLAB command roots as follows:

```
>>T=0.0001;z=roots([6 1-3*exp(-2*T)-10*exp(-3*T) 7*exp(-5*T)+3*exp(-3
*T)-4*exp(-2*T)]) <enter>
```

z = 0.9998 0.9996

Since the poles of G(z) approach the unit circle only in the limit $T \to 0$, it is clear that the system is stable for all non-zero values of the sampling interval, T.

In a manner similar to stability analysis of the closed-loop analog, single-input, single-output system shown in Figure 2.32 using the *Nyquist plot* of the open-loop transfer function, $G_0(s) = G(s)H(s)$, we can obtain the Nyquist plots of *closed-loop digital systems* with an *open-loop* pulse transfer function, $G_0(z)$, using the MATLAB (CST) command *dnyquist* as follows:

```
>>dnyquist(num,den,T) <enter>
```

where num and den are the numerator and denominator polynomials of the system's open-loop pulse transfer function, $G_o(z)$, in decreasing powers of z, and T is the sampling interval. The result is a Nyquist plot (i.e. mapping of the imaginary axis of the Laplace domain in the $G_o(z)$ plane) on the screen. The user can supply a vector of desired frequency points, w, at which the Nyquist plot is to be obtained, as the fourth input argument of the command dnyquist. The command dnyquist obtains the Nyquist plot of the digital system in the $G_o(z)$ plane. Hence, the stability analysis is carried out in exactly the same manner as for analog systems, using the Nyquist stability theorem of Chapter 2. According to the Nyquist stability theorem for digital systems, the closed-loop system given by the pulse transfer function, $G_o(z)/[1+G_o(z)]$, is stable if the Nyquist plot of $G_o(z)$ encircles the point -1 exactly P times in the anti-clockwise direction, where P is the number of unstable poles of $G_o(z)$.

Example 8.11

Let us use the digital Nyquist plot to analyze the stability of the closed-loop sampled data analog system shown in Figure 8.4 with the plant, $G_1(s) = 1/[(s(s+1)]]$. The open-loop transfer function of the system is $G_0(s) = (1 - e^{-Ts})/[s^2(s+1)]$, while the open-loop *pulse transfer function* can be written as follows:

$$G_0(z) = \left[z(T - 1 + e^{-T}) + 1 - e^{-T} - Te^{-T} \right] / \left[(z - 1)(z - e^{-T}) \right]$$
 (8.46)

For a specific value of the sampling interval, such as T=0.1 second, the Nyquist plot is obtained as follows:

```
>>T=0.1;num = [T-1+exp(-T) 1-exp(-T)-T*exp(-T)],den = conv([1 -1],[1 -exp(-T)]) <enter>
num =
0.0048    0.0047
den =
1.0000    -1.9048    0.9048
```

The poles of $G_0(z)$ are obtained as follows:

```
>>roots(den) <enter>
ans =
1.0000
0.9048
```

Thus, $G_0(z)$ does not have any poles outside the unit circle, hence P=0. The digital Nyquist plot is obtained in the frequency range 1-10 rad/s as follows:

```
>>w=logspace(0,1);dnyquist(num,den,T,w) <enter>
```

The resulting Nyquist plot is shown in Figure 8.6. Note that the Nyquist plot of $G_o(z)$ does not encircle the point -1 in the $G_o(z)$ plane. Hence, the closed-loop system with pulse transfer function, $G_o(z)/[1+G_o(z)]$, is stable for T=0.1

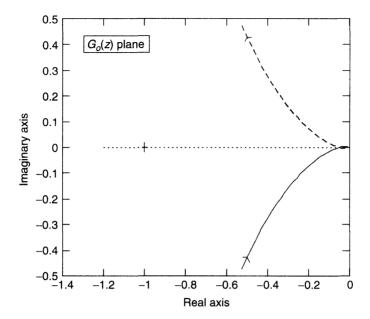


Figure 8.6 Digital Nyquist plot of open-loop pulse transfer function, $G_o(z)$, for the sampled-data closed-loop system of Example 8.10 with sampling interval T = 0.1 s

second. We can also analyze the stability of the closed-loop system by checking the closed-loop pole locations as follows:

```
>>sysp=tf(num,den);sysCL=feedback(sysp,1) <enter>
Transfer function:
0.004837z+0.004679
.....z^2-1.9z+0.9095

>>[wn,z,p]=damp(sysCL); wn, p <enter>
wn =
0.9537
0.9537
p=
0.9500+0.0838i
0.9500-0.0838i
```

Note that the returned arguments of the CST command damp denote the closed-loop poles, p, and the magnitudes of the closed-loop poles, wn. (Caution: z and wn do not indicate the digital system's damping and natural frequencies, for which you should use the command ddamp as shown below.) Since wn indicates that both the closed-loop poles are inside the unit circle, the closed-loop system is stable.