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Note that we can find the steady state value of response to an arbitrary input, t/(z), by
calculating the digital DC gain of the pulse transfer function (1 — z~l)G(z)U(z). Also, an
idea about a digital system's response can be obtained from the location of the dominant
poles with respect to the unit circle in the z-domain. The MATLAB command ddamp is
quite useful in determining the natural frequencies and damping ratios associated with
the poles of a digital system, and is used in a manner similar to the command damp
for analog systems, with the difference that the sampling interval, T, is specified as the
second input argument:

»[mag,wn,z] = ddamp(den,T) <enter>

where den is the denominator polynomial of the system's pulse transfer function, T is the
sampling interval, mag is the magnitude of the pole in the z-domain, wn is the equivalent
natural frequency in the s-plane, and z is the equivalent damping ratio. The command
ddamp used without the sampling interval as the second input argument gives only the
magnitudes of the poles of the system. When used without the output arguments on the
left-hand side, the magnitudes, natural frequencies, and damping ratios are printed on the
screen. Instead of den, you can input the z-plane pole locations as a vector, and get the
returned damping ratios and natural frequencies associated with the poles. Let us determine
the natural frequencies and damping ratios of the digital system of Example 8.12 when
the sampling interval is T = 0.1 second as follows:

»ddamp([1 -0.7 0 .3 ] ,0 .1) <enter>

Eigenvalue Magnitude Equiv. Damping Equiv. FrEq. (rad/sec)
0.3500+0.4213i 0.5477 0.5657 10.6421
0.3500-0.4213i 0.5477 0.5657 10.6421

A damping ratio of £ = 0.5657 indicates a well damped response, as seen in Figure 8.7.
For systems of order greater than two, we can identify the dominant poles which are

the closest to the unit circle in the z-domain. The performance of such systems is primarily
determined by the location of the dominant poles.

8.7 Closed-Loop Compensation Techniques for
Single-Input, Single-Output Digital Systems

For improving the performance of digital systems, we can apply closed-loop compensation
techniques similar to analog systems discussed in Section 2.12, by placing a compensator
with pulse-transfer function, //(z), in closed-loop with a digital plant, G(z), as shown in
Figure 8.8. However, we have to be mindful of the dependence of the closed-loop digital
system's properties on the sampling interval, T, and the properties of the z-transform,
while designing compensators in the z-domain. Let us consider an example of closed-loop
digital compensation.

Just as in continuous systems, we can have the ideal proportional-integral-derivative
(PID) control of digital systems. The digital equivalent of a PID compensator's transfer
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394 DIGITAL CONTROL SYSTEMS

figure 8.8 A single-input, single-output digital feedback control system with controller pulse transfer
function, H(z), and plant pulse transfer function, G(z)

function is obtained by combining the proportional term with the z-transform of the
derivative term and the z-transform of the integral term. Note that the time deriva-
tive of the error in Figure 8.8, e(1)(f), is approximated by the digital equivalent of a
first order difference as e(1)(0 = [e(kT) — e(kT — T ) ] / T , whose ^-transform is obtained
using the time-shift property of z-transform (Eq. (8.13)) as (1 — z~l)E(z)/T. Thus, the
derivative term of PID compensator has the form K&(\ — z"1). The z-transform of
the integral term, K\/s, is K\z/(z — 1) according to Table 8.1. The PID compensator's
pulse transfer is thus given by H(z) = KP + KD(l - z"1) + K\z/(z - 1), or //(z) =
[(KP + Kn + tfi)z2 - (KP - 2KD)z + KD]/(z2 - z).

Example 8.13

Consider a digital system with the following pulse-transfer function and a sampling
interval, T = 0.2 second:

G(z) = O.OOOKz - l)/(z2 + 1.97z + 0.99) (8.55)

The poles, natural frequencies and damping ratios of the system are obtained as
follows:

»ddamp([1 1.97 0.99], 0.2) <enter>

Eigenvalue Magnitude Equiv. Damping Equiv. FrEq. (rad/sec)
-0. 9850+0. 1406i 0.9950 0.0017 14.9990
-0. 9850-0. 1406i 0.9950 0.0017 14.9990

A damping ratio of £ = 0.0017 indicates a lightly damped response, which is
unacceptable. It is desired to increase the closed-loop damping to £ = 0.7 while
keeping the natural frequency unchanged at a)n = 15 rad/s, through a proportional-
integral (PI) compensator in the closed-loop configuration of Figure 8.8. With
//(z) = Kp + K\z/(z — 1), the closed-loop pulse-transfer function is given by

(8.56)

Y(z)/Yd(z) =

= 0.0001 [KP(z - 1) + #iz]/[z2 + {1.97 + 0.0001 (tfP +

+ 0.99- 0.0001 KP]

The closed-loop poles are the roots of z2 + {1.97 + 0.0001 (KP + K{)}z + 0.99 -
0.0001 Kp = Q, and must be the same as the desired pole locations z\.2 =
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CLOSED-LOOP COMPENSATION TECHNIQUES 395

± i sin{^r(l - C)1 /2}]. Plugging f =
0.7 and ct>M = 15 rad/s in the desired characteristic polynomial, z2 —
2exp(— t ;conT)cos{a)nT(l — £2)[/2}z + exp(—2^conT), and comparing the coeffi-
cients with those of the denominator polynomial Eq. (8.56), we get Kp = 9750 and
K\ — —28 125. Let us check whether the closed-loop poles are at desired locations
as follows:

»Kp=9750;Ki=-28125;sysGH=tf(0.0001*[Kp+Ki-Kp],[1 1.97 0.99]);
sysCL=feedback(sysGH,1) <enter>

Transfer function:
-1 .838Z-0.975

z~2+0.1325z+0.015

»ddamp([1 0.1325 0.015], 0.2) <enter>

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/s)
-6.63e-002+1 .03e-001i 1 .226-001 7.00e-001 1.506+001
-6. 636-002-1. 03e-001i 1.22e-001 7.006-001 1 .506+001

which confirms that the desired closed-loop damping and natural frequency have
been achieved.

The steady-state error of the stable closed-loop system shown in Figure 8.8 to a
unit step desired output can be obtained from the final value theorem (Eq. (8.16))
as follows:

e(oo) = lim^a - z ~ l ) E ( z ) = limpid - z~l)Yd(z)/U + G(z}H(z)}

+ G(z)H(z)] (8.57)

or the steady state error is the digital DC gain of the pulse transfer function 1/[1 +
G(z)H(z)]. For the system of Example 8.13, the steady-state error is computed as
follows:

»num=0.0001*[Kp+Ki -Kp];den=[1 1 .97 0.99] ;a=ddcgain(num,den) ;
e=1 / (1+a) <enter>

e =
3.4510

which is very large. The closed-loop steady state error to a step desired output
can be reduced to zero by a compensator which has two poles at z = 1, such
as H(z) = K(z + a ) / ( z — I)2, since the pole at z = 1 of the PI compensator got
canceled by the plant zero at the same location. Recall that a pole at s = 0 in the
s -plane is equivalent to a pole at z = 1 in the z-plane; hence, the type of a digital
closed-loop system is determined by the number of poles at z = 1 in the open-loop
pulse transfer function, G(z)H(z). For the system of Example 8.13, you can find the
compensator, H(z) = K(z + a)/(z — I)2, as an exercise such that the closed-loop
damping and natural frequency are as desired, and the steady-state error to a unit
step function is brought to zero.
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