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Example 8.13 illustrates that the closed-loop compensation of digital systems in the
z-domain can be carried out similarly to that of analog systems in the s-domain, which
was discussed in Section 2.12. You can extend the remaining techniques presented in
Section 2.12, namely, lead compensation, lag compensation, and lead-lag compensation
for the z-domain design of digital systems.

8.8 State-Space Modeling of Multivariable
Digital Systems

Consider a single-input, single-output digital system described by the pulse transfer func-
tion, G(z). Instead of having to find the partial fraction expansion of Y(z) = G(z)U(z)
for calculating a system's response, an alternative approach would be to express the pulse
transfer function, G(z), as a rational function in z, given by G(z) = num(z)/den(z),
and then obtaining the inverse z-transforms of both sides of the equation, Y(z)den(z) —
U(z)num(z). Let us write a general expression for a rational pulse transfer function, G(z),
as follows:

G(z) = (bmzm + bm^zm- + • • • + biz + bo)/(zn + an^zn~ + • • • + a,z + OQ) (8.58)

We can write Y(z)den(z) = U(z)num(z} as follows:

F(z)(z" + fl.-iz"-1 + • • • + fliz + flo) = U(z)(bmzm + bm.[Z
m-1 + • • • + *>iz + *>o)

(8.59)
or

znY(z) + an^z"~l Y(z) + ••• + a } Z Y ( z ) + a0Y(z)

= bmzmV(z) + bm.lz
m-lU(z) + ••• + bizU(z) + b0U(z) (8.60)

Recall the time-shift property of the z-transform given by Eq. (8.13). For a single
translation in time, z{y(kT + T)} = zY(z) — zy(0~), where Y(z) is the z-transform
of y(kT). Taking another step forward in time, we can similarly write z{y(kT +
2r)} = z{y(£r + r)}-zy(r-) = z2F(z)-z2y(0-)-zy(7'-), and for n time steps
the corresponding result would be z{y(kT + nT)} = z"Y(z) - z"~ly(Q~) - zn~2y(T~) -
---- zy{« - l ) T ~ } . Similarly, for the input we could write z{u(kT + mT)} = zmU(z) -
zm~lu(Q~} - zm~2u(T~) ----- zu{(m - 1)7""}. The values of the output at n previous
instants, y(0~), y(T~ ) , . . . , y{(n — \)T~} are analogous to the initial conditions that
must be specified for solving an nth order continuous-time differential equation.
In addition, the input, u(kT), is assumed to be known at the m previous time
instants, w(0~), u(T~), . . . , u[(m — l)r~}. For simplicity, let us assume that both
input and output are zero at the n and m previous time instants, respectively,
i.e. y((T) = y(T-) = • • . = y{(n - 1)7"-} = M((T) = ii(r~) = • • • = u{(m - l)T~} =
0. Then, it follows that zY(z) = z{y(kT + 71)}, . . . , znY(z) = z{y(kT +nT)}, and
zU(z) = z{u(kT + D}, . . . , zmU(z) = z{u(kT + mT)}. Hence, we can easily take the
inverse z-transform of Eq. (8.60) and write

y(kT + nT) = -an-iy(kT + nT - T) ----- a}y(kT + T) - OQy(kT)

+ b0u(kT) + blU(kT + T) + -- + bmu(kT + mT) (8.61)
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Equation (8.61) is called a difference equation (digital equivalent of a differential equation
for analog systems) of order n. It denotes how the output is propagated in time by n
sampling instants, given the values of the output at all previous instants, as well as the
values of the input at all instants up to t = kT + mT. Note that for a proper system,
m < n, a simplified notation for Eq. (8.61) is obtained by dropping T from the brackets.
and writing the difference equation as follows:

\) - a0y(k)

+ b0u(k) + b\u(k + \) + -- + bmu(k + ni) (8.62)

where y(k + n) is understood to denote y(kT + nT), and so on. Solving the difference
equation, Eq. (8.62), for the discrete time output, y(&), is the digital equivalent of solving
an nth order differential equation for the output, y(r), of an analog system. The most
convenient way of solving an nth order difference equation is by expressing it as a set
of n first order difference equations, called the digital state-equations (analogous to the
state-equations of the continuous time systems).

For simplicity, let us assume that n = m in Eq. (8.62), which can then be written as
follows:

y(k + n) = -an-iy(k + n - 1) ----- a{y(k+\)- aQy(k)

+ b0u(k) + b\u(k + 1) + • • • + bnu(k + n) (8.63)

To derive a digital state-space representation for the digital system described by Eq. (8.63),
let us draw a schematic diagram for the system - shown in Figure 8.9-in a manner similar
to Figure 3.4 for an nth order analog system. The drawing of the schematic diagram is
made simple by the introduction of a dummy variable, q(k), in a manner similar to the
analog system of Example 3.6 (since the right-hand side of Eq. (8.63) contains time delays
of the input), such that

q(k + n) + an^{q(k + n - 1) + • • • + a\q(k + l)+aoq(k) = u(K) (8.64)

and

bnq(k + n) + bn-iq(k + n - 1) + • • • + biq(k + 1) + bQq(k) = y(k) (8.65)

In Figure 8.9, the integrator of Figure 3.4 is replaced by a delay element (denoted
by a rectangle inscribed with 27). While the output, x(t), of an integrator is the time-
integral of its input, jc(1)(f), the output, x(k), of a delay element is the input, x(k + 1),
delayed by one sampling interval. Note from Eq. (8.13) that the pulse transfer function
of a delay element is 1/z, while the transfer function of an integrator is 1/5. Thus, a
delay element is the digital equivalent of an integrator. We can arbitrarily select the state
variables, x\(k}, x2(k}, . . ., xn(k), to be the outputs of the delay elements, numbered from
the right, as shown in Figure 8.9. Therefore, x\ (k) = q(k), x2(k) = q(k + 1), . . . , xn(k) =
q(k + n — 1), and the digital state-equations are the following:

1) -x2(k) (8.66a)

 EBSCOhost - printed on 10/27/2025 6:10 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use
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(X/r+n-1) ,q(k+n-2) , , q(k+1)

Figure 8.9 Schematic diagram for an nth order digital system

X2(k (8.66b)

JCB_I(*+ !)=*„(*)

xn(k

(8.66c)

- u(k)] (8.66d)

The output equation is obtained from the summing junction at the top of Figure 8.9 as
follows:

y(k) = boxi(k) + bix2(k) + • • • + bn-\xn(k) + bnxn(k + 1) (8.67)

and substituting Eq. (8.66d) into Eq. (8.67) the output equation is expressed as follows:

y(k) = (b0 - aobn)xi(k) + (b{ - aMx2(k) + ••• + (£„_, - an-iba)xn(k) + bnu(k)
(8.68)

The matrix form of the digital state-equations is the following:

u(k)

(8.69)

+ bau(k) (8.70)

- *,(*+!) -

;;;;f++;>_

" 0 1 0 ... 0 ~
0 0 1 . . . 0

0 0 0 ... 1
_— OQ —a\ —a2 ... —an-\_

£(*)

xn-\(k)
„ *„(*) _

0

0

and the output equation in matrix form is as follows:

= [(b0 - - a\bn} . . . (bn-\ - an^bn
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_ STATE-SPACE MODELING OF MULTIVARIABLE DIGITAL SYSTEMS _ 399

On comparing Eqs. (8.69) and (8.70) with Eqs. (3.59) and (3.60), respectively, we find
that the digital system has been expressed in the controller companion form. Alternatively,
we can obtain the observer companion form and the Jordan canonical form using the same
approach as given in Chapter 3 for analog systems.

Whereas we used a single-input, single-output system to illustrate the digital state-
space representation, the main utility of digital state-space representations lie in modeling
multivariable digital systems. A general multivariable, linear, time-invariant digital system
can be expressed by the following state-space representation:

x(k + 1) = Adx(&) + Bdu(&) (8.7!)

Ddu(*) (8.72)

where Ad, Bd, Cd, and Dd are the constant coefficient matrices, and x(k) and u(&) are the
digital state-vector and the digital input vector, respectively, at the fcth sampling instant.
The subscript d on the coefficient matrices is used to indicate a digital state-space repre-
sentation (as opposed to an analog state-space representation, which is denoted by A, B,
C, D). All the properties of the state-space representation as discussed in Chapter 3
for analog systems - namely linear transformation, system characteristics, and block-
building - apply for the digital state-space representations, with the crucial difference
that the s-plane for analog systems is transformed into the z-plane for digital systems.
For example, a multivariable digital state-space representation given by the coefficient
matrices Ad, Bd, Cd, and Dd has a pulse transfer matrix, G(z) = Cd(zl — Ad)"^ + Dd.

Example 8.14

Let us find a state-space representation for the digital system of Example 8.12. The
pulse transfer function of the system is G(z) = z./(z2 — 0.7z + 0.3). We can employ
the MATLAB (CST) function ss to get a state-space representation of the digital
system as follows:

»num = [1 0];den = [1 -0.7 0.3] ;sys=t f (num,den);sys=ss(sys) <enter>

a =
x1 x2

x1 0.7 -0.6
x2 0.5 0

b =
u1

x1 1
x2 0

c =
x1 x2

y1 1 0

d =
U1

yl 0

 EBSCOhost - printed on 10/27/2025 6:10 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



400 DIGITAL CONTROL SYSTEMS

The eigenvalues of the digital state-dynamics matrix, A</, must be the poles of the
system in the z-domain. We can determine the eigenvalues, natural frequencies,
and damping ratios associated with Ad for a sampling interval, T = 0.1 second,
by using the MATLAB (CST) function ddamp as follows (ddamp allows the use
of the state-dynamics matrix as an input, instead of the denominator polynomial
of G(z)):

»[Ad,Bd,Cd,Dd]=ssdata(sys);ddamp(Ad,0.1) <enter>

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/sec)
0.3500+0.4213i 0.5477 0.5657 10.6421
0.3500-0.4213i 0.5477 0.5657 10.6421

Note that these values are the same as those obtained in Example 8.12. Let us
find the Jordan canonical form of the digital system using the command canon as
follows:

»sysc = canon(sys,'modal') <enter>

a =
x1 x2

x1 0.35 0.42131
x2 -0.42131 0.35

b =
u1

x1 1.354
x2 1.1248

C =
x1 x2

y1 0.73855 0

d =
u1

y1 0

Note the appearance of the real and imaginary parts of the poles in z-domain as the
elements of the Jordan form state-dynamics matrix.

While obtaining the pulse transfer functions of single-input, single-output, sampled-
data analog systems, we employed a sampling and holding of continuous time input signal.
This procedure can be extended to multivariable systems, where each input is sampled
and held. Such a procedure leads to a digital approximation of multivariable analog
system, which we studied in Chapter 4. Instead of the pulse transfer functions (or pulse
transfer matrices), it makes a better sense to talk of digital state-space representation
of a sampled-data, multivariable analog system. Chapter 4 presented analog-to-digital
conversion of analog state-equations, to obtain their time domain solution on a digital
computer. The same techniques of converting an analog system to an equivalent digital
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system can be employed for other purposes, such as controlling an analog plant by a
digital controller. In Chapter 4, the MATLAB (CST) commands c2d and c2dm were
introduced for approximating an analog system by an equivalent digital system. While
c2d employs a zero-order hold (z.o.h) for holding the sampled signals, the command
c2dm also allows & first-order hold (f.o.h), a bilinear (Tustin), or aprewarp interpolation
for better accuracy when the continuous time input signals are smooth. The command
c2dm is used as follows:

»[Ad,Bd,Cd,Dd] = c2dm(A,B3C,DJTJ'method
1) <enter>

where A, B, C, D are the continuous-time state-space coefficient matrices, Ad, Bd, Cd,
Dd are the returned digital state-space coefficient matrices, T is the specified sampling
interval, method is the method of interpolation for the input vector to be specified as zoh
(for zero-order hold), foh (for first-order hold), tustin (for Tustin interpolation), orprewarp
(for Tustin interpolation with frequency prewarping - a more accurate interpolation than
plain Tustin). While the first-order hold was covered in Chapter 4, the bilinear (or Tustin)
approximation refers to the use of the approximation, s = ln(z)/T % 2(z — l)/[T(z + 1)1
while mapping from the 5-plane to the z-plane. Such an approximation is obtained by
expanding ln(z) = 2(z - l)/(z + 1) + (l/3)[(z - l)/(z + I)]3 H and retaining only
the first term of the series. While the imaginary axis on the 5-plane is not precisely mapped
as a unit circle in the z-plane, as it would be according to z = £Ts (or s = ln(z)/F). A
frequency response of the bilinear transformed digital system would be thus warped
by this approximation. To remove the frequency warping of the bilinear transformation,
a pre-warping technique is applied, by which the critical frequencies of the s -plane
transfer function fall precisely on the z-plane at the points where they belong. You may
refer to a textbook on digital control [2] for pre-warping techniques applied to bilinear
transformation.

Example 8.15

Let us find a digital state-space representation of a sampled-data analog system with
the following state coefficient matrices:

A =

C =

- 1 0 0
0 -0.5 0.7
0 -0.7 -0.5

' 1 0
0 -1
0 -1

1 0 0
0 0 1 D =

~2
(8.73)

if the sampling interval is 0.2 second. We begin by a digital conversion using a
z.o.h with the command c2dm as follows:

»A = [-1 0 0; 0 -0.5 0.7; 0 -0.7 -0 .5 ] ; B = [1 0; 0 -1; 0 -1 ] ; C = [1 0
0; 0 0 1]; <enter>

»D = [0 0; 0 - 2 ] ; [ Ad, Bd, Cd, Dd ] = c2dm(A,B,C,D J 0.1 , ' zoh ' )
<enter>
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