Example 8.13 illustrates that the closed-loop compensation of digital systems in the z-domain can be carried out similarly to that of analog systems in the s-domain, which was discussed in Section 2.12. You can extend the remaining techniques presented in Section 2.12, namely, *lead compensation*, *lag compensation*, and *lead-lag compensation* for the z-domain design of digital systems.

8.8 State-Space Modeling of Multivariable Digital Systems

Consider a single-input, single-output digital system described by the pulse transfer function, G(z). Instead of having to find the partial fraction expansion of Y(z) = G(z)U(z) for calculating a system's response, an alternative approach would be to express the pulse transfer function, G(z), as a rational function in z, given by G(z) = num(z)/den(z), and then obtaining the inverse z-transforms of both sides of the equation, Y(z)den(z) = U(z)num(z). Let us write a general expression for a rational pulse transfer function, G(z), as follows:

$$G(z) = (b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0)/(z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0)$$
 (8.58)

We can write Y(z)den(z) = U(z)num(z) as follows:

$$Y(z)(z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}) = U(z)(b_{m}z^{m} + b_{m-1}z^{m-1} + \dots + b_{1}z + b_{0})$$
(8.59)

or

or applicable copyright law

$$z^{n}Y(z) + a_{n-1}z^{n-1}Y(z) + \dots + a_{1}zY(z) + a_{0}Y(z)$$

$$= b_{m}z^{m}U(z) + b_{m-1}z^{m-1}U(z) + \dots + b_{1}zU(z) + b_{0}U(z)$$
(8.60)

Recall the time-shift property of the z-transform given by Eq. (8.13). For a single translation in time, $z\{y(kT+T)\}=zY(z)-zy(0^-)$, where Y(z) is the z-transform of y(kT). Taking another step forward in time, we can similarly write $z\{y(kT +$ |2T| = $z\{y(kT+T)\}$ - $zy(T^{-}) = z^{2}Y(z) - z^{2}y(0^{-}) - zy(T^{-})$, and for *n* time steps the corresponding result would be $z\{y(kT+nT)\}=z^nY(z)-z^{n-1}y(0^-)-z^{n-2}y(T^-)$ $\cdots - zy\{n-1\}T^-$. Similarly, for the input we could write $z\{u(kT+mT)\}=z^mU(z)$ $z^{m-1}u(0^-) - z^{m-2}u(T^-) - \cdots - zu\{(m-1)T^-\}$. The values of the output at n previous instants, $y(0^-)$, $y(T^-)$, ..., $y\{(n-1)T^-\}$ are analogous to the *initial conditions* that must be specified for solving an nth order continuous-time differential equation. In addition, the input, u(kT), is assumed to be known at the m previous time instants, $u(0^-), u(T^-), \dots, u\{(m-1)T^-\}$. For simplicity, let us assume that both input and output are zero at the n and m previous time instants, respectively, i.e. $y(0^-) = y(T^-) = \cdots = y\{(n-1)T^-\} = u(0^-) = u(T^-) = \cdots = u\{(m-1)T^-\} = u(0^-) = u(0^-$ 0. Then, it follows that $zY(z) = z\{y(kT+T)\}, \ldots, z^nY(z) = z\{y(kT+nT)\},$ and $zU(z) = z\{u(kT+T)\}, \dots, z^mU(z) = z\{u(kT+mT)\}.$ Hence, we can easily take the inverse z-transform of Eq. (8.60) and write

$$y(kT + nT) = -a_{n-1}y(kT + nT - T) - \dots - a_1y(kT + T) - a_0y(kT) + b_0u(kT) + b_1u(kT + T) + \dots + b_mu(kT + mT)$$
(8.61)

Equation (8.61) is called a *difference equation* (digital equivalent of a *differential equation* for analog systems) of order n. It denotes how the output is *propagated* in time by n sampling instants, given the values of the output at all *previous* instants, as well as the values of the input at all instants up to t = kT + mT. Note that for a proper system, $m \le n$, a simplified notation for Eq. (8.61) is obtained by dropping T from the brackets, and writing the difference equation as follows:

$$y(k+n) = -a_{n-1}y(k+n-1) - \dots - a_1y(k+1) - a_0y(k) + b_0u(k) + b_1u(k+1) + \dots + b_mu(k+m)$$
(8.62)

where y(k+n) is understood to denote y(kT+nT), and so on. Solving the difference equation, Eq. (8.62), for the discrete time output, y(k), is the digital equivalent of solving an *n*th order differential equation for the output, y(t), of an analog system. The most convenient way of solving an *n*th order difference equation is by expressing it as a set of *n* first order difference equations, called the *digital state-equations* (analogous to the state-equations of the continuous time systems).

For simplicity, let us assume that n = m in Eq. (8.62), which can then be written as follows:

$$y(k+n) = -a_{n-1}y(k+n-1) - \dots - a_1y(k+1) - a_0y(k) + b_0u(k) + b_1u(k+1) + \dots + b_nu(k+n)$$
(8.63)

To derive a digital state-space representation for the digital system described by Eq. (8.63), let us draw a *schematic diagram* for the system – shown in Figure 8.9–in a manner similar to Figure 3.4 for an *n*th order analog system. The drawing of the schematic diagram is made simple by the introduction of a *dummy variable*, q(k), in a manner similar to the analog system of Example 3.6 (since the right-hand side of Eq. (8.63)) contains time delays of the input), such that

$$q(k+n) + a_{n-1}q(k+n-1) + \dots + a_1q(k+1) + a_0q(k) = u(k)$$
 (8.64)

and

$$b_n q(k+n) + b_{n-1} q(k+n-1) + \dots + b_1 q(k+1) + b_0 q(k) = y(k)$$
(8.65)

In Figure 8.9, the *integrator* of Figure 3.4 is replaced by a *delay element* (denoted by a rectangle inscribed with \mathcal{D}). While the output, x(t), of an integrator is the time-integral of its input, $x^{(1)}(t)$, the output, x(k), of a delay element is the input, x(k+1), *delayed* by one sampling interval. Note from Eq. (8.13) that the pulse transfer function of a delay element is 1/z, while the transfer function of an integrator is 1/s. Thus, a delay element is the digital equivalent of an integrator. We can arbitrarily select the state variables, $x_1(k), x_2(k), \ldots, x_n(k)$, to be the *outputs* of the delay elements, *numbered from the right*, as shown in Figure 8.9. Therefore, $x_1(k) = q(k), x_2(k) = q(k+1), \ldots, x_n(k) = q(k+n-1)$, and the digital state-equations are the following:

$$x_1(k+1) = x_2(k) (8.66a)$$

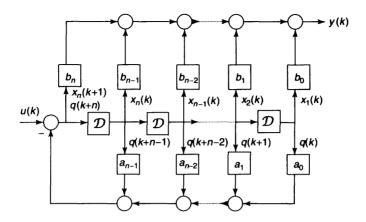


Figure 8.9 Schematic diagram for an nth order digital system

$$x_2(k+1) = x_3(k)$$
 (8.66b)

 $x_{n-1}(k+1) = x_n(k) (8.66c)$

$$x_n(k+1) = -[a_{n-1}x_n(k) + a_{n-2}x_{n-1}(k) + \dots + a_0x_1(k) - u(k)]$$
 (8.66d)

The output equation is obtained from the summing junction at the top of Figure 8.9 as follows:

$$y(k) = b_0 x_1(k) + b_1 x_2(k) + \dots + b_{n-1} x_n(k) + b_n x_n(k+1)$$
 (8.67)

and substituting Eq. (8.66d) into Eq. (8.67) the output equation is expressed as follows:

$$y(k) = (b_0 - a_0 b_n) x_1(k) + (b_1 - a_1 b_n) x_2(k) + \dots + (b_{n-1} - a_{n-1} b_n) x_n(k) + b_n u(k)$$
(8.68)

The matrix form of the digital state-equations is the following:

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ \vdots \\ x_{n-1}(k+1) \\ x_{n}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \dots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ \vdots \\ x_{n-1}(k) \\ x_{n}(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(k)$$

$$(8.69)$$

and the output equation in matrix form is as follows:

$$y(k) = [(b_0 - a_0 b_n)(b_1 - a_1 b_n) \dots (b_{n-1} - a_{n-1} b_n)] \begin{bmatrix} x_1(k) \\ x_2(k) \\ \vdots \\ x_n(k) \end{bmatrix} + b_n u(k)$$
 (8.70)

On comparing Eqs. (8.69) and (8.70) with Eqs. (3.59) and (3.60), respectively, we find that the digital system has been expressed in the *controller companion form*. Alternatively, we can obtain the *observer companion form* and the *Jordan canonical form* using the same approach as given in Chapter 3 for analog systems.

Whereas we used a single-input, single-output system to illustrate the digital state-space representation, the main utility of digital state-space representations lie in modeling *multivariable* digital systems. A general multivariable, linear, time-invariant digital system can be expressed by the following state-space representation:

$$\mathbf{x}(k+1) = \mathbf{A_d}\mathbf{x}(k) + \mathbf{B_d}\mathbf{u}(k) \tag{8.71}$$

$$\mathbf{y}(k) = \mathbf{C}_{\mathbf{d}}\mathbf{x}(k) + \mathbf{D}_{\mathbf{d}}\mathbf{u}(k) \tag{8.72}$$

where A_d , B_d , C_d , and D_d are the constant coefficient matrices, and $\mathbf{x}(k)$ and $\mathbf{u}(k)$ are the digital state-vector and the digital input vector, respectively, at the kth sampling instant. The subscript d on the coefficient matrices is used to indicate a digital state-space representation (as opposed to an analog state-space representation, which is denoted by \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D}). All the properties of the state-space representation as discussed in Chapter 3 for analog systems – namely linear transformation, system characteristics, and block-building – apply for the digital state-space representations, with the crucial difference that the s-plane for analog systems is transformed into the z-plane for digital systems. For example, a multivariable digital state-space representation given by the coefficient matrices A_d , B_d , C_d , and D_d has a pulse transfer matrix, $G(z) = C_d(z\mathbf{I} - A_d)^{-1}B_d + D_d$.

Example 8.14

Let us find a state-space representation for the digital system of Example 8.12. The pulse transfer function of the system is $G(z) = z/(z^2 - 0.7z + 0.3)$. We can employ the MATLAB (CST) function ss to get a state-space representation of the digital system as follows:

The eigenvalues of the digital state-dynamics matrix, A_d , must be the *poles* of the system in the z-domain. We can determine the eigenvalues, natural frequencies, and damping ratios associated with A_d for a sampling interval, T=0.1 second, by using the MATLAB (CST) function *ddamp* as follows (*ddamp* allows the use of the state-dynamics matrix as an input, instead of the denominator polynomial of G(z)):

```
>>[Ad,Bd,Cd,Dd]=ssdata(sys);ddamp(Ad,0.1) <enter>
```

```
Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/sec) 0.3500+0.4213i 0.5477 0.5657 10.6421 0.3500-0.4213i 0.5477 0.5657 10.6421
```

Note that these values are the same as those obtained in Example 8.12. Let us find the *Jordan canonical form* of the digital system using the command *canon* as follows:

Note the appearance of the real and imaginary parts of the poles in z-domain as the elements of the Jordan form state-dynamics matrix.

While obtaining the pulse transfer functions of single-input, single-output, sampled-data analog systems, we employed a sampling and holding of continuous time input signal. This procedure can be extended to multivariable systems, where each input is sampled and held. Such a procedure leads to a digital approximation of multivariable analog system, which we studied in Chapter 4. Instead of the pulse transfer functions (or pulse transfer matrices), it makes a better sense to talk of digital state-space representation of a sampled-data, multivariable analog system. Chapter 4 presented analog-to-digital conversion of analog state-equations, to obtain their time domain solution on a digital computer. The same techniques of converting an analog system to an equivalent digital

system can be employed for other purposes, such as controlling an analog plant by a digital controller. In Chapter 4, the MATLAB (CST) commands c2d and c2dm were introduced for approximating an analog system by an equivalent digital system. While c2d employs a zero-order hold (z.o.h) for holding the sampled signals, the command c2dm also allows a *first-order hold* (f.o.h), a *bilinear* (Tustin), or a *prewarp* interpolation for better accuracy when the continuous time input signals are smooth. The command c2dm is used as follows:

where A, B, C, D are the continuous-time state-space coefficient matrices, Ad, Bd, Cd, **Dd** are the returned digital state-space coefficient matrices, T is the specified sampling interval, method is the method of interpolation for the input vector to be specified as zoh (for zero-order hold), foh (for first-order hold), tustin (for Tustin interpolation), or prewarp (for Tustin interpolation with frequency prewarping – a more accurate interpolation than plain Tustin). While the first-order hold was covered in Chapter 4, the bilinear (or Tustin) approximation refers to the use of the approximation, $s = \ln(z)/T \approx 2(z-1)/[T(z+1)]$ while mapping from the s-plane to the z-plane. Such an approximation is obtained by expanding $\ln(z) = 2(z-1)/(z+1) + (1/3)[(z-1)/(z+1)]^3 + \cdots$ and retaining only the first term of the series. While the imaginary axis on the s-plane is not precisely mapped as a unit circle in the z-plane, as it would be according to $z = e^{Ts}$ (or $s = \ln(z)/T$). A frequency response of the bilinear transformed digital system would be thus warped by this approximation. To remove the frequency warping of the bilinear transformation, a pre-warping technique is applied, by which the critical frequencies of the s-plane transfer function fall precisely on the z-plane at the points where they belong. You may refer to a textbook on digital control [2] for pre-warping techniques applied to bilinear transformation.

Example 8.15

Let us find a digital state-space representation of a sampled-data analog system with the following state coefficient matrices:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -0.5 & 0.7 \\ 0 & -0.7 & -0.5 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$$
(8.73)

if the sampling interval is 0.2 second. We begin by a digital conversion using a z.o.h with the command c2dm as follows:

```
>>A = [-1 0 0; 0 -0.5 0.7; 0 -0.7 -0.5]; B = [1 0; 0 -1; 0 -1]; C = [1 0 0; 0 0 1]; <enter>

>>D = [0 0; 0 -2]; [Ad,Bd,Cd,Dd] = c2dm(A,B,C,D,0.1, 'zoh')
```