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9.1 Introduction

The previous chapters saw coverage of topics ranging from classical control to modern
digital control. In many modern control applications, certain other techniques are employed
which are grouped here as advanced topics. A detailed coverage of the advanced topics -
such as HQQ control, input shaping, and nonlinear control - is beyond the scope of the
present text. However, you can get a flavor of each topic in this chapter, and for details
you are encouraged to look at the many references given at the end of the chapter.

9.2 HOO Robust, Optimal Control

In Chapter 6, we derived linear optimal controllers with full-state feedback that mini-
mized a quadratic objective function, and in Chapter 7 we studied Kalman filters as
optimal observers in the presence of white noise. The resulting compensator with an
optimal regulator (or tracking system) and a Kalman filter was referred to as an LQG
(Linear, Quadratic, Gaussian) controller. While LQG controllers exhibit good perfor-
mance, their robustness to process and measurement noise can only be indirectly ensured
by iterative techniques, such as loop-transfer recovery (LTR) covered in Chapter 7. The
//oo (pronounced H-infinity) optimal control design technique, however, directly address
the problem of robustness by deriving controllers which maintain system response and
error signals to within prescribed tolerances, despite the presence of noise in the system.
Figure 9.1 shows a plant with transfer matrix, G(s), input vector, U(s), and output vector,
Y(s), being controlled by a feedback compensator with transfer matrix, H(s). The vector
w(s) contains all inputs external to the closed-loop system, i.e. process and measurement
noise vectors, as well as the desired output vector. The vector e(^) contains all the errors
that determine the behavior of the closed-loop system, i.e. the estimation error and the
tracking error vectors.

The plant's transfer matrix can be partitioned as follows:

(9.1)
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Figure 9.1 Multivariable closed-loop control system with plant, G(s), controller, H(s), external input
vector, w(s), error vector, e(s), plant input vector, U(s), and plant output, v'e^

such that

and

W(S) + G12(S)U(S)

G21(S)W(S)+G22(S)U(S)

(9.2)

(9.3)

Substituting the control-law, U(s) = H(s)Y(s), into Eqs. (9.2) and (9.3), we can write
the following relationship between the error vector and the external inputs vector:

= [On(5) + Gi2(5)H(5){I - (9.4)

The transfer matrix multiplying w(s) on the right-hand side of Eq. (9.4) can be denoted as
F(j) = [Gn(j) + G12(j)H(j){I -G22(j)H(5)}-'G2i(5)] for simplicity of notation, and
we can re-write Eq. (9.4) as

e(s) = F(J)W(J) (9.5)

The HQO optimal control synthesis procedure consists of finding a stabilizing controller,
H(s), such that the H^-norm of the closed-loop transfer matrix, F(s), is minimized. The
HOC-norm is a scalar assigned to a matrix (an animal of the same species as the singular
value discussed in Chapters 2 and 7) and is defined as follows:

= suPaJ<Tmax(F(/fc>))] (9.6)

where crmax(F(/(w)) denotes the largest singular value of F(/w) (see Chapter 7 for the defi-
nition and calculation of singular values), while sup^t-] is called the supremum function,
and denotes the largest value of the function within the square brackets encountered as
the frequency, o>, is varied. Clearly, obtaining the HOC-norm of a transfer matrix requires
calculating the singular values of the transfer matrix with s = ico at a range of frequencies,
and then obtaining the maximum of the largest singular value over the given frequency
range. Using the MATLAB's Robust Control Toolbox command sigma for computing the
singular values, you can easily write an M-file for calculating the HOC-norm over a spec-
ified frequency range (or bandwidth). The LQG problem can be expressed in a similar
manner as the minimization of another matrix norm, called the H-r-norm [1].

To better understand the H^ optimal control, let us consider a regulator problem (i.e.
a zero desired output) with a process noise, p(s). Then, w(s) contains only the process
noise, and comparing Figures 9.1 and 7.10, we can write w(s) = p(s). In Section 7.6,
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we saw that the sensitivity of the output, Y(s), with respect to process noise depends
upon the matrix [1 + GCOHCs)]"1, which we call the sensitivity matrix of the output,
S(s) = [I -f G^HCs)]"1 . If a scalar norm of this matrix is minimized, we can be assured
of the robustness of the closed-loop system with respect to process noise. Such a scalar
norm is the Hoc-norm. Thus, our robust optimal control problem consists of finding a
stabilizing controller, H(s), such that the Hoo-norm of the sensitivity matrix at the output,
IISO'&OHoc, is minimized. Note that, in this case, ¥(s) = S(s). However, instead of mini-
mizing ||S(z<y)||oo over all frequencies, which will increase sensitivity to high-frequency
measurement noise and poor stability margins, we should minimize HSO'ft))!!^ over only
those frequencies where the largest magnitudes of the process noise occur. This is prac-
tically achieved by defining a frequency weighting matrix, W(/o>), such that the largest
singular value of W(/co) is close to unity in a specified frequency range, 0 < co < co,,, and
rapidly decay to zero for higher frequencies, co > wa. The frequency, co0, is thus regarded
as a cut-off frequency below which the sensitivity to process noise is to be minimized. The
robust, optimal control problem is then solved by finding a stabilizing controller which
minimizes ||W(/a>)S(/a>)||oo. The Hoc-optimal control problem for a regulator is thus the
weighted sensitivity minimization problem. Equating ¥(s) = W(s)S(,s) for the weighted
sensitivity minimization, we get the following partition matrices for the augmented plant:

Gu(s) = W(5); Gi2(s) = -W(s)GCv); G2,(s) = I; G22(s) = -G (9.7)

which, substituted into Eqs. (9.2) and (9.3), make e(j) - WCv)Y(j).
We learned in Section 7.6 that the requirements of robustness conflict with the require-

ments of optimal control (i.e. minimal control input magnitudes) and tracking performance
(i.e. increased sensitivity to a changing desired output). While robustness to process
noise is obtained by minimizing the largest singular value of a frequency weighted
sensitivity matrix, 8(5) (as seen above), optimal control requires minimizing the largest
singular value of H(s)S(s), and good tracking performance to a changing desired output
requires maximizing the smallest singular value of the complementary sensitivity matrix,
T(s) = 1 — 8(5). However, high-frequency measurement noise rejection requires mini-
mizing the largest singular value of T(s) at high frequencies. Such conflicts can be
resolved (as in Section 7.6) by choosing different frequency ranges for maximizing and
minimizing the different singular values (or HOC -norms). The different frequency ranges
for the various optimizations can be specified as three different frequency weighting
matrices, Wi(/&>), WiO'aO, and WsO'w) such that the Hoc-norm of the mixed-sensitivity
matrix, HMO'&^Hoc, is minimized where

(9.8)

Formulating the HOC -optimal control problem in this fashion ensures the specification of
both performance and robustness of the desired closed loop system by the three frequency
weighting matrices, such that

W2(io>)H(/<w)S(/a>)

Omax(S(/«)) < OWtWj-^)) (9.9)

<rmax(H(/<w)S(/ft>)) < tfmaxCWjVlft))) (9.10)
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and
<W(T(io>)) < cw^^/a,)) (9.1 1)

The mixed-sensitivity Hoc-optimal control problem posed above is difficult to solve
for a general system, because the existence of a stabilizing solution, H(s), requires extra
conditions [1], apart from those obeyed by the LQG controllers of Chapter 7. However,
the advantages of an HOC controller lie in its automatic loop shaping as function of
the weighting matrices, and hence it is a direct, one-step procedure for addressing both
performance and robustness. Here, the weighting matrices are the design parameters to
play with. Glover and Doyle [1] provide an efficient algorithm for solving the mixed-
sensitivity HOC -optimal control problem, which results in two algebraic Riccati equations.
The algorithm imposes the restriction

HyM(ifi»)lloo < 1 (9-12)

where y is a scaling factor, to be determined by the optimization process. The Robust
Control Toolbox [2] of MATLAB contains the algorithm of Glover and Doyle [1] in an M-
file called hinfopt.m, which iterates for y until a stabilizing solution satisfying Eq. (9.12)
is obtained.

Example 9.1

Consider the design of an active flutter-suppression system for a flexible aircraft
wing [3] with the aeroelastic plant's linear, time-invariant model given by the
following transfer function:

Y ( s ) / U ( s )

[-19.67s12 - 2241s11 - 4.160s10 - 630500s9 - 5.779 x lO6*8 - 4.007 x 107s7 - 1.933
_ x 108s6 - 5.562 x 108s5 - 8.377 x 108s4 - 6.098 x 108s3 - 1.698 x IP8*2 + 0.0001853s]

[s12 + 39.27s11 + 21 210s10 + 4.677 x lO5*9 + 5.682 x 106s8 + 5.233 x 10V + 3.485 x 108s6

+ 1.528 x 109s5 +4.289 x 109s4 + 7.636 x 109s3 + 8.155 x 109s2 +4.683 x 109s + l.lOLrlO9]

The single-input, single-output, 12th order plant has a trailing-edge control-surface
deflection as the input, U(s), and normal acceleration at a sensor location as
the output, y(s). The design objective is to minimize the sensitivity matrix at
frequencies below 1 rad/sec, while achieving approximately 20 dB/decade roll-off
above 8 rad/sec, for suppression of flutter. (Flutter is a destructive structural insta-
bility of aircraft wings.) In the present case, the weighting matrices are chosen as
follows

= (s2 + 2s + l)/(52 + 605 + 900) (9.13)

W2(5) = (0.015 + 0.1)/(5 +0.1) (9.14)

W3(5) = (0.0105335 + 3.16)/(0.l5 + 1) (9.15)

Note that the weighting matrices are scalar functions. The stable solution to the
mixed-sensitivity HOC -optimal control problem is solved by the MATLAB's Robust
Control Toolbox [2] function hinfopt, which iteratively searches for the optimum
value of y, and is carried out by the following MATLAB statements:
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»sysp=ss(sysp) ; [a,
<enter>

b,c,d]=ssdata(sys) ; % plant's state-space model

» w1=[1 2 1;1 60 900]; w2=[0.01 0.1;1 0 .1 ] ; w3=[0. 010533 3.16;0.1 1];
% frequency weights <enter>

»[A,B1 ,B2,C1,C2,D11 ,D12,D21 ,D22]=augtf (a ,b ,c ,d ,w1 ,w2,w3) ;
% 2-port augmented system <enter>

»[gamopt,acp,bcp)ccp jdcp jacl,bcl,ccl,dcl]=hinfopt
(A, 61 ,62,01,02,011,012,021 ,022) ; <enter>

«H- Infinity Optimal Control Synthesis »
No Gamma D11<=1

1 LOOOOe+OOO OK
2 5.00006-001 OK
3 2.50006-001 OK
4 3.75006-001 OK
5 4.37506-001 OK
6 4.06256-001 OK
7 4.21886-001 OK
8 4.14066-001 OK
9 4.10166-001 OK

P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.

OK OK OK FAIL OK UNST
OK OK OK FAIL OK UNST
OK OK OK OK OK STAB
OK OK OK OK OK STAB
OK OK OK FAIL OK UNST
OK OK OK OK OK STAB
OK OK OK FAIL OK UNST
OK OK OK FAIL OK UNST
OK OK OK FAIL OK UNST

Iteration no. 6 is your best answer under the tolerance: 0.0100.

Hence, the optimum value of y =0.40625 for a design tolerance of 0.01, is

obtained in nine iterations. A stable closed-loop initial response (Figure 9.2), and a
2.2 percent increase in the flight-velocity at which flutter occurs at standard sea-level
are the results of this ]
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Figure 9.2 Closed-loop initial response of the H^ -based active flutter suppression system
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