
446 ADVANCED TOPICS IN MODERN CONTROL

-138.43

-138.44

0)

1 -138.45

§> -138.46
c
'«
£ -138.47

-138.48

-138.49

-138.5
1C'

= (s2 + 2s+ 1)/(s2 + 60s + 900)

= (0.01s + 1)7(0.1 s+1)

10- 10°
Frequency (rad/s)

102

Figure 9.3 Structured singular value (dB) plots of the two optimal //-synthesis controllers for
active flutter-suppression of an aircraft wing

Many illustrative examples of how various control design techniques handle the pro-
blem of structured singular value synthesis, especially for robust flight control, can be
found in Magni, et al. [6].

9.4 Time-Optimal Control with Pre-shaped Inputs

A topic of current interest is the development of pre-shaped inputs for controlling well
modeled plants. The term pre-shaped inputs (or input shaping) refers to an open-loop
control system, where the input vector, u(0, is pre-determined from certain strategy other
than feedback. As an alternative to feedback control, input shaping offers a simpler control
mechanism for implementation. However, being an open-loop design, input shaping is
more sensitive to errors in modeling the plant dynamics when compared to a feedback
design. Hence, input shaping requires a better modeling of a physical plant compared to
the closed-loop control systems.

A common strategy for generating pre-shaped inputs is the time-optimal control. Consi-
der a linear, time-invariant plant described by the following state-equation:

x (1)(/) = Ax(f) + Bu(r) (9.31)

The time-optimal control refers to moving the system from an initial state, x(0), to a final
state, x(r/), such that the time taken, //, is the minimum. In other words, the time-optimal
control input vector, u(/), minimizes the following objective function:

J(Q,tf)=\T(tf)\x(tf) (
JQ

dr (9.32)
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TIME-OPTIMAL CONTROL WITH PRE-SHAPED INPUTS 447

subject to the constraint that the state-vector, \(t), must obey Eq. (9.31). Since there is
usually a physical limit on the magnitude of control inputs that can be generated by a
given actuator, each element, Uj(t), of the input vector, u(f), must obey an additional
constraint given by

MO I <mj (9.33)

where m7 denotes the upper bound on Uj(t). A solution to the time-optimal control
problem given by Eqs. (9.31)-(9.33) is obtained by applying the minimum-principle [7]
(also see Section 8.11), which minimizes 7(0, tf) only at a finite number of discrete time
points 18] (rather than in continuous time). Hence, the solution to the time-optimal control
problem posed above results in a digital input - even for an analog plant. If the final state
is zero, i.e. x(//) = 0, then each element of the time-optimal control input, u*(0, can be
written as follows [8]:

u*(t) = -mj sgn[Bjp*(0] (9.34)

where sgn[-J denotes the vector signum function (defined as 1 when the corresponding
element of the vector within square brackets is positive, and — 1 when the corresponding
element of the vector within square brackets is negative), Bj denotes the jth row of BT,
and p*(0 is the optimal co-state vector, which is defined as the solution of the following
co-state equation:

p*d)(0 = -ATp*(r) (9.35)

Equation (9.34) indicates that each input vector element, u*(t), assumes values of ±m/
depending upon the sign of Bjp*(/), which oscillates about 0. Such a time-optimal control
thus exerts the maximum possible control input magnitude until x(/y) = 0 is reached, and
is given the name bang-bang input. An alternative way of expressing the bang-bang input
sequence given by Eq. (9.34) is by a sampling switch (see Section 8.1), which turns on
and off at a fixed sampling interval, T. The bang-bang input sequence is thus regarded as
an ideal sampler which produces a series of pulses, u*(t), weighted by the input value,
fj(kT), according to Eq. (8.2), re-written as follows:

oc

uJ(t) = ^fj(kT)S(t-kT) (9,36)
k=Q

where fi(kT) = -mj sgn[Bjp*(A:r)].
Considering the fact that the bang-bang input is constant within each sampling interval,

Eq. (9.36) is said to convolve a series of impulses, A(k)8(t — kT), with a step input,
mjUs(t), where A(k) is the amplitude of the impulse applied at the &th sampling instant.
Such a statement can be used with the MATLAB function kron which multiplies two
sequences, in order to obtain the bang-bang input sequence as follows:

w*(0 = mjus(t)*A(k)8(t - kT) (9.37)

where * denotes the convolution of the step function, mjUs(t), with the weighted impulse
sequence, A(k)S(t — kT), and A(k) is given by

l ; k = Q , t f / ( k T )

2(-l)k; k = \,...,tf/(kT)-\ (9.38)

 EBSCOhost - printed on 10/27/2025 6:12 AM via UNIVERSITY OF SALFORD. All use subject to https://www.ebsco.com/terms-of-use



448 _ ADVANCED TOPICS IN MODERN CONTROL _

It can be shown [8] that if the eigenvalues of A are real, then each component of the
optimal control vector, u*(f), can switch from my to — /n/, or from — m7 to m;, at most
(n — 1) times, where n is the order of the plant. For example, a second order plant requires
an optimal bang-bang input sequence that switches only once between t — 0 to / = tf.
Since the sampling interval is a constant for the bang-bang input, it follows that for a
second order plant, T = t//2. Hence, switching occurs at the middle of the control input
sequence, and the impulse magnitudes at the various values of k are given as follows for
a second order plant:

r * i = r ° ' 2i (939)\_A(k)\ [I -2 i j (y"iy'

Note that the bang-bang input sequence only moves the plant to a final zero state. If the
final state, x(f/), is non-zero, the bang-bang input sequence must be modified.

A practical application of the time-optimal pre-shaped inputs is in the control of flexible
structures, where it is required to make the vibration in the structure (i.e. velocity and
acceleration of flexible modes), zero at the end of the input sequence. There are many
possible ways to develop such vibration suppression pre-shaped inputs, which has been
the subject of active research for many years. However, since input shaping is an open-
loop control, only those input shapes can be successfully implemented that are robust with
respect to variations in the plant's model. Singer and Seering [9] proposed the following
robust, weighted impulse sequence, A(k)8(t — kT), based on linear dynamics to reduce
the residual vibration of a flexible structure with one rigid-body mode and N flexible
modes, and of total mass, m :

A(kN)S(t - kNTN) (9.40)

where fco and A(fc0) are the bang-bang impulse sequence given by Eq. (9.39), and &,
and A(ki) denote the sampling instants and impulse amplitudes, respectively, for the /th
flexible mode of the structure given by

4° ' 2 1[\/4 1/2 1/4 J

TQ = tf/2, and 7) = 2n/a)i, where ct>, is the natural frequency of the /th flexible mode.
Clearly, tf is a summation of all the sampling instants of the input sequence given by
Eq. (9.40). The convolutions required in Eq. (9.40) can be carried out using MATLAB
with the function kron. An M-file which generates the input sequence of Eq. (9.40) for
a single-input plant, assuming a maximum input magnitude of unity, is inshape.m, listed
in Table 9.1. The M-file inshape.m requires the natural frequencies of the structure as a
column vector, w, and the final time, t f , and returns the input sequence as an amplitude
vector, u, and the discrete time vector, t:

»[u,t]=inshape(w,tf ) <enter>

The M-file inshape.m assumes a maximum input magnitude of unity. If the maximum
input magnitude is not unity, you should multiply the input sequence, u, by the maximum
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Table 9.1 Listing of the M-file inshape.m for generating pre-shaped inputs for vibration suppression
of a linear flexible structure with a rigid body displacement

inshape.m

function [a,t]=inshape(w,tf )
%Input shaping for robust, time-optimal control of nth order system
% w= vector of natural frequencies of the structure (rad/s)
% (first element of w must be zero, denoting the rigid body mode)
% tf=final time
% a = returned vector of input magnitudes
% t = returned vector of discrete times for the input sequence
% Copyright (c) 2000 by Ashish Tewari
%size of w vector is n
n=size(w, 1 ) ;
p=n-1; % p is the no. of flexible modes
% Calculate the time-periods of the flexible modes: -
for i=2:n;
T(i-1)=2*pi/w(i);
end
% Assign the flexible mode impulse sequences :-
for i=l :p;
F1(i,:)=[0 0.5*T(i)

F2=[0.25 0.5 0.25];
end
% Convolve the impulse sequences for flexible modes :-
a1=zeros(1 ,3"p) ;
et=zeros(1 ,3"p) ;
size(a1 )
if p>1
a1=[kron(F2,F2) zeros(1 ,3"p-9) ] ;
et=[kron(ef1(1 , : ) ,ef1 (2, :)) zeros (1 ,3Ap-9)] ;
else
a1=F2;
et=ef1(1,:);
end
for i=2:p-1 ;
a1=[kron( (nonzeros(a1 ) ) ' ,F2) zeros (1 ,3Ap-3"(i+1 ) ) ] ;
et=[kron( (nonzeros(et) ) ' ,ef 1 (i+1 , : ) ) zeros (1 ,3"p-3A(i+1 ) ) ] ;
end
% Assign impulse sequence for the rigid-body mode:-
Ftf=[0 0.5*tf tf ];
Fa=[1 -2 1];
% Convolve rigid-body impulse sequence with that of the flexible
% modes:- aO=kron(a1 ,Fa) ' ;
eft=exp(Ftf ) ;
et1=kron(et,eft) ;
% Generate input sequence :-
tO=log(et1)';
[tO,i]=sort(tO) ;

( continued overleaf )
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Table 9.1 (continued)

inshape.m

aO=aO(i) ;
m=size(tO,1 ) ;
a2(1)=0;
for j=2:m+1 ;

end
eps=1e-10;
t( l)=0;
t(2)=eps;
for j=2:m-1 ;
t(2* j -1)=tO(j ) -eps;
t ( 2 * j ) = t O ( j ) ;
end
t (2*m-1)=tO(m);
t(2*m)=tO(m)+eps;
a(1)=a2(1) ;
a(2)=a2(2) ;
for j=2:m;
a (2 * j - 1 )=a2 ( j ) ;
a (2* j )=a2( j+1) ;
end

magnitude. It is not required that the frequency vector, w, for inshape.m should contain
all the natural frequencies of the plant. Instead, it is a common practice to select a few
dominant modes (usually the ones with the smallest natural frequencies) for input shaping.
However, the higher frequency modes will not be suppressed by an input shaper that is
based only on the first few modes. Let us examine the multi-mode input shaping for a
simple system with a smooth frequency spectrum - a train of n equal masses.

Example 9.3

Consider a simple system of a train of n identical masses, m, connected by iden-
tical springs of stiffness, k. A force, /(f), applied on the first mass is the input
to the system, while the output is the displacement of the center of mass, jc =
1/n ^ X j , where jc, is the displacement of the ith mass. A state-space representa-
tion of the plant can be obtained with the state-vector x(f) = Ui (t); X 2 ( t ) ; . . . xn(t);
x\l\t); Jt^C/); ...; x ^ l ) ( t ) ] T . An M-file called nmass.m, which generates the state-
space representation for a train of n-masses, is given in Table 9.2. Let us select
n = 13, m = 1 kg and k = 105 N/m, and generate the state-space model and the
natural frequencies of the plant in increasing magnitudes as follows:

»[A,BJC,D]=nmass(13,1e5); freq=sort(damp(A))' <enter>

freq =
Columns 1 through 7
0.0000 0.0000 76.2341 76.2341 151.3565 151.3565 224.2718
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Table 9.2 Listing of the M-file nmass.m for the state-space model of a train
of n identical masses, connected by (n — 1) identical springs

nmass.m

function [a,b,c,d]=nmass(n,k)
% system of n unit masses connected with n-1 springs of
% stiffness k, with input force applied to the first mass
% and displacement of center of mass as the output
K=zeros(n);
K(1,:)=k*[1 -1 zeros(1,n-2)];
K(n,:)=k*[zeros(1,n-2) -1 1];
for i=2:n-1;
K(i,:)=k*[zeros(1,i-2) -1 2 -1 zeros(1,n-i-1)];
end
a=[zeros(n) eye(n);-K zeros(n)];
b=[zeros(1,n) 1 zeros(1,n-1)]';
c=[ones(1,n) zeros(1,n)]/n;
d=0;

Columns 8 through 14
224.2718 293.9167 293.9167 359.2757 359.2757 419.3956 419.3956

Columns 15 through 21
473.3998 473.3998 520.5007 520.5007 560.0116 560.0116 591.3562

Columns 22 through 26
591.3562 614.0775 614.0775 627.8442 627.8442

The 26th order plant has one rigid and 12 flexible second-order modes with frequen-
cies 76.2, 151.4, 224.3, 293.9, 359.3, 419.4, 473.4, 520.5, 560.0, 591.4, 614.1, and
627.8 rad/s. Since there is a double eigenvalue at s = 0 (denoting the rigid-body
mode), the plant is unstable. The damping ratios associated with the flexible modes
are all zeros, indicating an undamped plant. Although the plant is undamped, a
Bode gain plot of the system would be smooth with no resonant peaks. This is
because the plant is minimum phase, and has all imaginary-axis poles cancelled by
the transmission zeros. The control objective is to cancel the residual velocity and
acceleration at the end of the input sequence, while keeping the motion of the center
of mass, y ( t ) , negligible.

To see the vibration suppression achieved by an input shaper obtained by taking
only the first few modes in Eq. (9.40) instead of all 12 flexible modes, let us calculate
the input sequence with only the first two flexible modes for tf = 0.1 s, assuming
the maximum input magnitude of unity:

»w=freq(1:2:6) '<enter>

w =
0.0000
76.2341
151.3565
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»[u,t]=inshape(w, 0.1); % input profile with only first
two flexible modes <enter>

The displacement of the center of mass to the pre-shaped input sequence is obtained
using Isim as follows:

»sys=ss(A,B,C,D); [y,t,X]=lsim(sys,u,t); <enter>

whereas the velocity of the first mass is calculated as follows:

»sys1=ss(A,B, [zeros(1,13) 1 zeros(1,12) ], 0);
[x1,t,X]=lsim(sys1,u,t); <enter>

The pre-shaped input sequence, u(t), the resulting center of mass displacement, y(f),
and the velocity of the first mass, dx\ (t)/dt, are plotted in Figure 9.4. Note that the
vibration suppression is evident with zero velocity of the first mass at the end of
the input sequence. In a practical implementation, input shaping can be combined
with a feedback tracking system which moves the train by a given displacement,
or achieves a given velocity of the center of mass, while suppressing the residual
vibration using pre-shaped inputs as a feedforward controller.

-1
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=• 0
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Figure 9.4 Pre-shaped input, u(t), center of mass displacement, y(f), and velocity of the first

mass, x\}\t), for a train of 13 identical masses connected by springs

Many investigators [10,11] have applied the input shaping approach to practical prob-
lems. Since robustness of input sequences with variations in the plant model is crucial,
Singhose, Derezinski and Singer [12] derived an extra-insensitive input shaper using on-
off reaction jets for time-optimal maneuvers of spacecraft. The robustness of the shaper
was addressed [12] by minimizing the percentage residual vibration at the end of the
input sequence with respect to the frequency of each flexible mode considered.
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