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»Dc=C*B; Cc=C*A; [KJMJE]=lqry(A,B,Cc,Dc, 1e-8*eye(2),eye(2)
<enter>

K=
0.0297 0.0070 0.0010 0.0001 -0.7041 -0.4182
0.0557 -0.0074 0.0015 -0.0004 -0.2539 -0.1670

0.1531
0.0023
0.0044
-0.0002
0.1084
0.0480

0.0023
0.0036
0.0001
0.0001
-0.0137
-0.0061

0.0044
0.0001
0.0001
0.0000
0.0029
0.0013

-0.0002
0.0001
0.0000
0.0000
-0.0006
-0.0003

0.1084
-0.0137
0.0029
-0.0006
0.1945
0.0871

0.0480
-0.0061
0.0013
-0.0003
0.0871
0.0390

-94.2714
-9.6068
-1.3166+5.03171
-1.3166-5.03171
-0.4260+1.87381
-0.4260-1.87381

You can compare the closed-loop initial response of the ORW regulator designed
above, with that of the traditional LQRY regulator designed with the same weighting
matrices, Q and R. Generally, when applied to flexible structures, the ORW regu-
lator produces a much smoother response - with smaller overshoots - which decays
faster than that of the corresponding LQRY regulator [16, 17]. The application of
ORW optimal control is not limited to flexible structures, and can be extended to
any plant where smoothening of the transient response is critical. However, in some
applications the sensitivity to noise may increase with ORW based compensators,
and must be carefully studied before implementing such controllers.

Up to this point, we have confined our attention to the design of linear control systems -
such as the classical approach of Chapter 2, the pole-placement state-space design of
Chapter 5, and the optimal, linear, state-space design of Chapter 6. In Chapter 2, we had
seen how nonlinear systems can be linearized by assuming small amplitude motion about
an equilibrium point. Hence, linear control design techniques can be used for controlling
nonlinear plants linearized about an equilibrium point. However, when we are inter-
ested in large amplitude motion of a nonlinear plant - either about an equilibrium point,
or between two equilibrium points (such as the motion of a pendulum going from the
equilibrium point at 6 = 0° to that at 0 = 180°) - the linearization of the plant is invalid,
and one has to grapple with the nonlinear model of the plant. The control design strategy
for a nonlinear plant can be based upon either linear or nonlinear feedback control laws.
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456 _ ADVANCED TOPICS IN MODERN CONTROL _

Since we cannot talk about the poles of a nonlinear plant, there can be no nonlinear pole-
placement design approach analogous to the methods of Chapter 5. A possible nonlinear
control strategy could be to come-up with a nonlinear feedback control law by trial and
error, that meets the closed-loop design requirements verified by carrying out a nonlinear
simulation (using the techniques of Section 4.6). Surely, such an approach cannot be called
a design strategy, due to its ad hoc nature. An alternative design approach is to transform
the nonlinear plant into a linear system using an appropriate feedback control law, and
then treat the linearized system by the linear control design strategies covered up to this
point. Such a procedure is referred to as feedback linearization. Feedback linearization
requires a very complicated (generally nonlinear) feedback control law, which is quite
sensitive to parametric uncertainties [18]. For a time- vary ing nonlinear plant, the use of
feedback linearization requires time-dependent scheduling of the feedback linearization
control law - called adaptive feedback linearization [19]. It is clear that the success of
feedback linearization is limited to those nonlinear plants which are feedback linearizable.
Fortunately, there is another nonlinear control design strategy, called nonlinear optimal
control, which can be applied generally to control a nonlinear plant.

Nonlinear optimal control is carried out in a manner similar to the linear optimal control
of Chapter 6 by minimizing an objective function formulated in terms of the energy of
motion and the control input energy. However, nonlinear optimal control - owing to the
nonlinear nature of the governing differential equations and control laws - is mathemati-
cally more complex than the linear optimal control of Chapter 6. It is beyond the scope
of this book to give details of the nonlinear optimal control theory, and you are referred
to Kirk [20] and Bellman [21] for the general derivation of the nonlinear optimal control
problem.

Let us consider a nonlinear plant with the following state-equation:

x(1)(r) = f{x(/),u(r),r} (9.51)

where x(f) is the state-vector, u(f) is the input vector, and f{x(f), u(r), t] denotes a
nonlinear vector function involving the state variables, the inputs, and time, /. The solution
of Eq. (9.51) with a known input vector, u(t), was discussed in Section 4.6, with some
special conditions to be satisfied by the nonlinear function, f{x(f), u(r), t] for the existence
of the solution, x(/), such as the continuity in time and the Lipschitz condition given by
Eq. (4.85). Suppose such conditions are satisfied, and we can solve Eq. (9.51) for \(t)
if we are specified u(/) and the initial-conditions, x(0). For simplicity, let us assume
that the nonlinear plant is time-invariant, i.e. f{x(r), u(r), /} = f{x(f), u(f)}, and the state-
equation does not explicitly depend upon the time, t, in Eq. (9.51). Furthermore, let us
assume for simplicity that the nonlinear function, f{x(r), u(f)}, can be expressed in the
following form:

, u(f)} = Ax(r) + Bu(r) + F{x(f)} (9.52)

where F{x(r)} is a nonlinear vector function that depends only upon the state- vector, x(/).
Equation (9.52) implies that there are no nonlinear terms involving the control input, u(r),
in the state-equation. Such nonlinear plants are fairly common in applications such as
robotics, spacecraft attitude control, bio-chemical dynamics, and economics [18]. Then a
nonlinear regulator problem for infinite-time can be posed by finding an optimal control
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_ NONLINEAR OPTIMAL CONTROL _ 457

input, u(r), such that the following objective function is minimized:

J= te(x(0) + uT(f)Ru(f)]d/ (9.53)=f
Jo

where q{x(t)} is a positive semi-definite function denoting the cost associated with the
transient response, x(f), and uT(ORu(0 is the quadratic cost associated with the control
input, u(f), with the matrix, R, being symmetric and positive definite. It can be shown
by the minimum principle [7] that if all the derivatives of F{x(?)} with respect to x(t)
are continuous in the space formed by the elements of x(0, then the minimization of the
objective function, /, given by Eq. (9.53) with respect to the control input vector, u(0,
subject to the constraint that the state- vector, x(/), satisfies Eq. (9.51), is equivalent to
the minimization of the following scalar function, called the Hamiltonian, with respect to
the control input, u(t):

J{ = q{x(t)} + ux(f)Ru(0 + [dV{x(t)}/dx(t)][A,x(t) + Bu(0 + F{x(f)}] (9.54)

where V{x(?)} is a positive semi-definite function with the property V{0} = 0, called the
Lyapunov function. Note that J , H, q{\(t)}, and V{x(f)} are all scalars. (We have seen
scalar functions of a vector in Chapter 6, such as xT(f)Qx(0 and uT(£)Ru(0.) However,
dVx(t)/dx(t) is a row-vector (sometimes expressed as d V x ( t } / d x ( t ) =pT(t), where
p(0 is called the co-state vector of the nonlinear system); the derivative of a scalar,
V{x(?)}, with respect to a vector, x(t), means the differentiation of the scalar, V{x(f)}, by
each element of the vector, x(/), and storing the result as the corresponding element of a
vector of the same size as x(t) (see Appendix B). Note that the Hamiltonian, 3~C, includes
the term [dV{x(t)}/dx(t)][Ax(t) + Bu(0 + F{x(f)}], which can be seen as imposing a
penalty on deviating from the state-equation, Eq. (9.51). Thus, the constraint of Eq. (9.51)
is implicitly satisfied by minimizing the Hamiltonian, 3f. . The necessary conditions of
optimal control can be expressed as follows [20]:

3J{/du(t) = 0 (9.55)

-74in = 0 (9.56)

(r)-u-(/) (9.57)

I»(/^(/) (9.58)

where p(r) = [dV{x(t)}/dx(t)]T (the co-state vector), and u*(0 denotes the optimal
control input (which minimizes J-C). The result of Eq. (9.55) is the following expression
for the optimal control input:

u*(0 = -R"1Br[3V{x(0}/3x(0]7' (9.59)

It is clear from Eq. (9.59) that we must know the Lyapunov function, V{x(t)}, (or
the co-state vector p(0 = [dV{x(t)}/dx(t)]T) if we have any chance of finding the
optimal control input, u*(t). The Lyapunov function (or the co-state vector) depends
upon the characteristics of the nonlinear plant. Mathematically, p(r), can be obtained
from the coupled solution to the two-point boundary-value problem posed by Eqs. (9.57)
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458 ADVANCED TOPICS IN MODERN CONTROL

and (9.58), which is not always possible to obtain analytically. However, since p(r) must
also satisfy Eq. (9.56), which is an algebraic equation analogous to the algebraic Riccati
equation for the linear problem, Eq. (9.56) gives a practical method of finding p(/) =
[dV{\(t)}/d\(t)]T. Equation (9.56) is generally known as the Hamilton-Bellman-Jacobi
equation (or, in short, the Bellman equation [21]) for the infinite-time problem. (For finite-
time control, the Bellman equation becomes a partial differential equation analogous to
the matrix Riccati equation for the linear problem.)

Once we have posed the optimal control problem by Eqs. (9.54)-(9.59), we can look
at a workable solution procedure [22] which uses Eq. (9.56) to derive dV{\(t)}/d\(t).
However, in using such a procedure, we must specify a form for V{x(/)}. Let us begin
by expressing the transient response energy, q{\(t)}, in the following form:

q{x(t)} = (l/2)[xr(r)

Qn Qii
Q21 Q22

.Qnl Qn2

Qln

Qln

Qnn_

X(f)

x2(r) (9.60)

where Qy = Qj, and x*(f) denotes a vector formed by raising each element of x(r) to
the power k. This definition of q{x(t)\ makes it positive semi-definite, as required, with
a proper selection of Qy. Note that (2« — 1) is the highest power of x(f) which appears
in the nonlinear function, F{x(/)K which can be written in the following form:

F{x(r)} = £J Fk{x(r)}
k=2

(9.61)

where F^{x(0} denotes a nonlinearity of power k. Similarly, Eq. (9.60) can be re-
written as

2n

]T
k=2

(9.62)

where

<?2{x(0} - xr(OQnx(r); fsWO) = xr(OQi2x2(r) + {x2(0}rQ2ix(0;

= xr(r)Q13x
3(r) + {x2(0}rQ22X2(0 + {x3(r)}rQ3ix(/);

(9.63)

To determine a structure for the Lyapunov function, V{x(f)}, that ensures its positive
semi-definiteness, and satisfies the property V{0} = 0, it is assumed that V{x(f)} has the
same form as q{\(t)}, i.e.

{x2(0}r- • •

Pll Pl2 Pin

P2, P22 P2n

"nl "n2 • • • * nn x2(/)

(9.64)
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NONLINEAR OPTIMAL CONTROL 459

where Py = PJJ. V{x(r)} can also be expressed as

2n

>k{x(0} (9-65)
k=2

where

V2{x(0} = xr(r)Pnx(0; V3{x(?)} = xr(f)P12x2(r) 4- {x2(?)}7P2]x(r);

V4{x(0) = xr(r)Pi3x3(0 + {x2(f)}7P22x2(r) + {x3(0}rP3ix(0;

(9.66)

V2n{x(t)} = {xn(t)}TPmxn(t)

Based on the expressions of F{x(?)}, q{x(t)}, and V{x(f)} given by Eqs. (9.61), (9.62)
and (9.65), the minimum value of the Hamiltonian can be written using Eq. (9.56) as

In

Jfmin = ̂ Hk=0 (9.67)
k=2

where

H2 = q2{x(t)} - [dV2{x(t)}/dx(t}}WTl'&T[dV2{x(t}}/dx(t)f

= 0 (9.68)

+ \dV2{x(t)}/dx(t)W2{x(t)} = 0 (9.69)

+ [d V3x(t)/dx(t)]¥2x(t) + [dV2x(t)/dx(t)]F3x(t) = 0 (9.70)

H2n = q2n{x(t)} - [d.V2{x(t)}/dx(t)]ER-lET[dV2n{x(t)}/dx(t)]T

[dV2n{x(t}}/dx(t}]mrllRT[dV2{x(t}}/dx(t)}T + [dV2n{x(t)}/dx(t)]Ax(t)

••• + ldV2{x(t)}/dx(t)W2n-i{x(t)} = 0
(9.71)
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460 ADVANCED TOPICS IN MODERN CONTROL

The Lyapunov parameters Py are determined by the following procedure [22]:

(a) Equation (9.68) - which has the linear part of the Hamiltonian, H2 - can be ex-
pressed as the following algebraic Riccati equation:

ATPn + PnA + Qn - PnBR-1BTPI1 = 0 (9.72)

Equation (9.72) is solved by standard procedures of Chapter 6 to get PH. Note that
the linear feedback control input for the plant is given by u(r) = — R~1BTPnx(f).

(b) PH is substituted into Eq. (9.69) to determine PU(= P2i)-

(c) PH and Pn are substituted into Eq. (9.70) to determine PU(= Pai) and PII-

(d) Continue successive substitution of known Py into Eqs. (9.70)-(9.71) until all param-
eters, including Pnn, are found.

When all Lyapunov parameters are calculated, they are substituted into Eq. (9.64) to
determine V{\(t)}, which is then differentiated with respect to x(f) and substituted into
Eq. (9.59) to determine the nonlinear optimal feedback control input, u*(0-

Example 9.6

Consider the wing-rock dynamics of a fighter airplane described in Example 4.13 by
nonlinear state-equations, Eq. (4.94), and programmed in the M-file wrock.m which
is listed in Table 4.8. The state-space matrices (Eq. (9.52)) of the time-invariant,
nonlinear plant are as follows:

' 0 1
-0.02013 0.0105

0 0
0 0
0 0.0629

0
0

20.202
0
0

0
1

-20.202
0
0

0
-0.02822

0
0

-1.3214

0
-0.1517

0
1

-0.2491

(9.73)

F{x(0}=[0; {0.026jt|(0-0.1273*2(0*2(0+0.5197*, (f)jtf(f)}; 0; 0; 0]T

The limit cycle wing-rock motion when the airplane is excited by the initial condition
x(0) = [0.2; 0; 0; 0; 0]r, was illustrated in Figures 4.17-4.19. Since the highest
power of the elements of x(0 in the expression for F{x(01 in the present wing-
rock model is 3, it follows that n = 2, and only Eqs. (9.68)-(9.70) are required
for determining the unknown Lyapunov parameters PH, Pn(= PziX and P22-
Here V4{\(t)} = (l/2){x2(r)}rP22x2(0, which implies P13 = P3, = 0. Following
the nonlinear control derivation procedure of the previous section, the non-zero
elements of the nonlinear control Lyapunov parameters are determined to be the
following [23]:
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Pi2(3, 1) = [0.02013Qi2(l, 3) + Qua, 1)]/[416.34P1,(3, 1)

+ 8.2162Pn(3, 3) + 0.4067] (9.74)

P12(3,4) = -Pn(3,4)P12(3, l)/Pu(3, 1) (9.75)

Pu(3, 5) = Pn(3, 5)Pi2(3, 4)/Pu(3, 4) (9.76)

P12(2, 1) = 49.6771 [Qn(l, 1) - 408.12PH(3, l)Pi2(3, 1)] (9.77)

Pi2(3,2) = [P12(3, 1)(1 -408.12Pn(3,2)

+ P12(2, l)]/(408.12Pn(3, 1) + 0.02013) (9.78)

P«(3, 3) = [Qi2(3, 1) - 40.404P12(3, l)(20.202Pn(3, 3) + 1)

- 0.02013P12(3, 2)]/[1224.4Pn(3, 1) (9.79)

P22(3, 1) == -P12(3, l)2/Pn(3, 1) (9.80)

, 2) = [0.026Pn(3, 3) - 816.24P12(3, 2)P12(3, l)]/(816.24Pn(3, 1))
(9.81)

P22(3, 3) = -3P12(3, l)Pi2(3, 3)/Pn(3, 1) (9.82)

P22(3, 4) = -P12(3, 1)P12(3, 4)/Pu(3, 1) (9.83)

P22(3, 5) = -P12(3, l)Pi2(3, 5)/Pn(3, 1) (9.84)

The nonlinear optimal control input is then obtained to be the following:

u*(0 = -20.202[PU(3, l)*i (t) + Pn(3, 2)*2(0 + Pn(3, 3)jt3(0 + Pn(3, 4)*4(0

+ Pu(3, 5)*5(0 + Pi2(3, D*2(0 + P12(3, 2)*f(0 + 2P12(3, 1)*, (t)x3(t)

+ 2Pi2(3, 2)*2(0*3(0 + 3Pi2(3, 3)*3
2(0 + 2P12(3, 4)x3(t)x4(t)

+ 2P12(3, 5)*3(0*5(0 + Pi2(3, 4)jcJ(f) + Pu(3, 5)*f(f)

+ 2P22(3, I ) x
2

l ( t ) x 3 ( t ) + 2P22(3, 2)jc|(r)^3(0 + 2P22(3, 3);c|(r)

+ 2P22(3, 4)^(0^1(0 + 2p22(3, 5)jc3(0*5
2(0] (9.85)

The cost parameters Qn and Qi2 are selected such that for a large initial condi-
tion, such as x(0) = [1; 1; 0; 0; 0]r, the resulting closed-loop aileron response is
limited to ±35° and all the transients subside within 50 s. Furthermore, stability
and performance robustness with respect to a 10 per cent variation in nonlinear
aerodynamic and actuator parameters [23] must be ensured. The Qn, Qi2 and Q22

matrices to achieve these specifications are the following:

"0.01
0
0
0

_ 0

0
0.01
0
0
0

0
0
1
0
0

0
0
0
0.001
0

0
0
0
0
0.00 1 _

Qii = 0 0 1 0 0 ; Q12 = 0.00513x31

(9.86)
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462 ADVANCED TOPICS IN MODERN CONTROL

where Ik denotes a (k x k) identity matrix. The resulting solution, PH, of the alge-
braic Riccati equation (Eq. (9.73)) is the following [23]:

0.0499
0.1081
0.0037
0.0124

-0.0076

0.1081
0.6927
0.0241
0.0952

-0.0295

0.0037
0.0241
0.0213
0.0033

-0.0010

0.0124
0.0952
0.0033
0.0189

-0.0034

-0.0076
-0.0295
-0.0010
-0.0034

0.0057

(9.87)

The nonlinear optimal feedback closed-loop response for the initial condition
x(0) = [1; 1; 0; 0; O]7 is shown in Figure 9.5. For this initial condition, the linear
feedback control input given by u(r) = —R~1BTPnx(f) fails to stabilize the
plant [23]. In these figures, comparison is made for 10 per cent variation in the
nonlinear aerodynamic parameters of F{x(r)} from their nominal values given in
Eq. (9.73). It is observed that the system's response is stable and within the specified
performance limits for 10 per cent uncertainty in the aerodynamic parameters.
Tewari [23] also shows robustness with respect to 10 per cent variation in the
actuator model.

90% Nominal aerodynamic parameters

Nominal aerodynamic parameters

110% Nominal aerodynamic parameters

20 30
Time (s)

10 20 30 40 50
Time (s)

70
60
50
40
30
20
10
0

-10
-20

Roll-rate, xz(t)
(deg./s)

0 10 20 30
Time (s)

40 50 10 20 30 40 50
Time (s)

Figure 9.5 Closed-loop response of the nonlinear optimal feedback control system for the
wing-rock suppression of a fighter airplane for a large initial condition
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