Al rights reserved. May not be reproduced in any formwi thout permssion fromthe publisher, except fair uses permtted under U S. or applicable copyright |aw.

Copyright 2002. John Wley and Sons, Inc.

Appendix A

Introduction to MATLAB,
SIMULINK and the Control
Systems Toolbox

MATLAB, a registered trademark of MathWorks, Inc. [1], is a high-level programming
language which uses matrices as the basic numerical entities (rather than scalars, as in
the low-level programming languages such as BASIC, FORTRAN, PASCAL, and C).
In other words, MATLAB allows us to directly manipulate matrices — such as adding,
multiplying, inverting matrices, and solving for eigenvalues and eigenvectors of matrices
(see Appendix B). If similar tasks were to be performed by a low-level programming
language, many programming statements constituting scalar operations would be required
for even the simplest matrix operations. Hence, MATLAB is ideally suited for linear
algebraic computations involving matrices, such as multivariable control design and anal-
ysis. Furthermore, MATLAB contains a library of many useful functions — both basic
functions (such as trigonometric, hyperbolic, and exponential functions), and specialized
mathematical functions — along with an advanced facility for plotting and displaying the
results of computations in various graphical forms. In addition, MATLAB is supplemented
by various special application toolboxes, which contain additional functions and programs.
One such toolbox is the Control System Toolbox, which has been used throughout this book
for solving numerical examples for the design and analysis of modern control systems. The
Control System Toolbox is available at a small extra cost when you purchase MATLAB,
and is likely to be installed at all the computer centres that have MATLAB. If your
university (or organization) has a computer center, you can check with them to find out
whether the Control System Toolbox has been installed with the MATLAB. If you are an
engineering/science student, or a practicing engineer, with interest in solving control prob-
lems, it is worth having access to both MATLAB and its Control System Toolbox, which
are available in student editions for most platforms supporting WINDOWS or UNIX.
In this book, it is assumed that you have the Control System Toolbox installed in your
MATLAB directory, and we draw upon the special functions and programs contained
in the Control System Toolbox for solving the numerical examples and exercises. You
can devise your own computer programs in MATLAB (called M-files) for solving special
problems. Some new M-files have been provided in the book for solving a range of control
problems.

EBSCO Publ i shing : eBook Col | ection (EBSCChost) - printed on 10/27/2025 6:13 AMvia UNI VERSI TY OF SALFORD
AN 83694 ; Tewari, Ashish.; Mdern Control Design with MATLAB and SI MULI NK
Account: s$2888710. mai n. ehost

468 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

A.1 Beginning with MATLAB

Here we will discuss how to familiarize ourselves with MATLAB. For further details,
you are referred to the MATLLAB User’s Guide [1]. The User’s Guide contains necessary
information about system requirements, installing and optimizing MATLAB. Once you
have MATLAB installed and running on your computer, a command line appears on the
screen with the prompt (>>) after which you can issue MATLAB commands. After a
command is issued at the prompt, you have to press the <enter> key for the command
to be executed. All the commands executed at the command line, and the variables
computed in those commands, are stored automatically and can be recalled, unless you
end the MATLAB session. A MATLAB command consists of one or several MATLAB
statements. Each MATLAB statement could be of one of the following forms:

>> variable = expression
or

>> expression

A variable is usually a matrix to be computed, while the expression is the mathemat-
ical operation by which the variable is to be computed. A variable can have a name
beginning with a letter, followed by up to 18 letters, digits, or underscores. The names
in MATLAB are case sensitive (i.e. upper and lower case are distinguished). If we omit
the ‘variable =’ from a statement, MATLAB automatically creates a variable named ans,
which is abbreviation for answer. For example, consider the following matrix, A, of size
(4 x 3) and another matrix, B, of size (3 x 2) which have to be multiplied:

W 9] [

A= ; B= 2 0 (A.1)
9 6 -3 5 13
11 0 4

We must assign values to the two matrices at the command line by two separate statements.
Each statement uses square brackets to denote the beginning and end of the matrix, and
separates two consecutive elements in each row by a space. Two consecutive rows are
separated by a semi-colon. The entire command assigning values to the matrices A and
B is thus issued as follows:

>> A=[-1 -4 0; 18 26 7; 9 6 -3; 11 0 4], B=[20 8; 2 0; 5 13] <enter>

Note that the two statements in the above command line have been separated by a comma.
This command produces the following result on the screen:

A:
1 -4 0
18 26 7
9 6 -3
11 0 4

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

EBSCOhost -

BEGINNING WITH MATLAB 469

g N
—- O W

3

which confirms that the matrices have been correctly entered. If you do not wish to see
the results of your command on the screen, you must end each statement in the command
line by a semi-colon. For example, the following command will store the matrices A and
B in the memory, but would rot result in their screen print-out:

>> A=[-1 -4 0; 18 26 7; 9 6 -3; 11 0 4]; B=[20 8; 2 0; 5 13]; <enter>
The multiplication of the matrices A and B (already entered into the memory of the
MATLAB work-space) can be carried out using the symbol *, and the product, AB, can

be stored as a third matrix, C, as follows:

>> C = A*B <enter>

C =
-28 -8
447 235
177 33
240 140

In this manner, you can carry out all other basic matrix operations, such as addition,
subtraction, transposition, inversion, left-division, right-division, raising a matrix to a
power, transcendental and elementary matrix functions, which are briefly described in the
following section. Each of the elements of a matrix could be a MATLAB expression,
such as

>>x = [1/4 25+sqrt(8.7); 0.5*sin(1.3) 7*1log(0.68)] <enter>

X =
0.2500 27.9496
0.4818 -2.6996

where / denotes division, + denotes addition, sqrt(.) denotes the positive square-root,
sin(.) denotes the sine function, and log(.) denotes the natural logarithm. An element
of a matrix can be referenced with indices inside parentheses, (i, j), indicating ith row
and jth column position, such as

>>x(2,2) <enter>

ans =
-2.6996

is the (2, 2) element of the matrix, x. If we assign a value to an element of a matrix with
indices larger than the size of the previously stored value of the same matrix, the size of

printed on 10/27/2025 6:13 AMvia UNI VERSI TY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of -use

470 INTRODUCTION TO MATLAB, SIMULNK AND THE CONTROL SYSTEMS TOOLBOX

the matrix is automatically increased to the new dimension, and all undefined elements
are set to zero. For example,

>>x(3,3)=10 <enter>
results in the following value of x:

X =
0.2500 27.9496 O
0.4818 -2.6996 O

0 0 10.0000

We can extract smaller matrices from the rows and columns of a larger matrix by using the
colon. For example, a matrix y defined as the matrix formed by taking elements contained
in the first two rows and the second and third columns of x is formed as follows:

>>y = x(1:2, 2:3) <enter>

y =
27.9496 O
-2.6996 O

The colon can also be used to generate elements with equal spacing, such as
>> x = 0:5/4:5 <enter>

which results in the following row-vector with elements from O to 5 with increments of
1.25:

0 1.2500 2.5000 3.7500 5.0000

MATLAB accepts numbers in various formats, such as the conventional decimal nota-
tion, a power-of-ten scale factor, or a complex unit as a suffix. For example, the following
assignment of a matrix is acceptable in MATLAB:

>>A = [1 -100i 0.0003; 9.87e5 1.5-4.69] 7.213e-21; 3+5e-4i -7.019e-3 2j] <enter>

where / (or j) denotes the imaginary part of a complex number (i.e. square root of —1),
and e followed by up to three digits denotes the power of 10 to which a number is raised.
The accuracy of floating-point arithmetic in MATLAB is about 16 significant digits, with
a range between 1073% and 103%. Any number falling outside this range of floating-point
arithmetic is called NaN, which stands for not a number. You can select from various
formats available in MATLAB for printing your results, such as short (fixed-point format
with 5 digits), long (fixed-point format with 15 digits), short e (floating-point format
with 5 digits), long e (floating-point format with 15 digits), hex (hexadecimal), and rat
(numbers approximated by ratios of small integers). The variables ans (answer) and eps

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

PERFORMING MATRIX OPERATIONS IN MATLAB 471

(27°%) are treated as permanent variables in MATLAB, and cannot be cleared or re-
assigned in the memory. Some built-in functions return commonly used variables, such
as pi, and inf which stand for mr, and oo, and should not be re-assigned other values in
a computation. For ease of programming, MATLAB also provides the function matrices
called ones, zeros, and eye, which stand for a matrix of all elements equal to 1, a matrix
with all zero elements, and an identity matrix, respectively. The sizes of these matrices
can be specified by the user, such as ones(3,4), zeros(2,6), or eye(5).
MATLAB supports help on all its commands, and you can receive help by typing

>> help command <enter>
or merely type
>>help <enter>

to receive information on all the topics on which help is available.
You can save all the variables that you have computed in a work-session by typing

>> save <enter>

before you end a work-session. This command will save all the computed variables in a
file on disk named matlab.mat. The next time you begin a session and want to use the
previously computed variables, just type

>> load <enter>

and the work-session saved in matiab.mat will be loaded in the current memory. You can
also use an optional name of the file in which the work-session is to be saved, such as
Jfname.mat, and choose selected variables (rather than all the variables to be saved), such
as X, Y, Z by typing the following command:

>>save fname X Y Z <enter>

The save command also lets you import and export ascii data files.

A.2 Performing Matrix Operations in MATLAB

In the previous section we saw how MATLAB assigns and multiplies two matrices.
The transpose of a matrix, A, is simply obtained by using the symbol ' (prime) as
follows:

>> A’ <enter>

If A is a complex matrix, then A’ is the transpose of the complex-conjugate of A. Adding
and subtracting matrices (of the same size) is performed simply with + and - symbols,
respectively:

>> A+B <enter>

EBSCChost - printed on 10/27/2025 6:13 AMvia UNIVERSITY OF SALFORD. All use subject to https://ww. ebsco.conlterns-of-use

472 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

or
>> A-B <enter>

If we wish to add or subtract a scalar, a, from each element of a matrix, A, then we can
simply type

>>A+a <enter>
or
>>A-a <enter>

Dividing a matrix by another matrix is supported by two matrix division symbols /
and \. The command

>>X=A\B <enter>

solves the linear algebraic equation AX = B, provided A is a non-singular matrix. The
command

>>X= B/A <enter>

solves the linear algebraic equation XA = B, provided A is a non-singular matrix.
Powers of a matrix can be computed using the symbol ~ as follows:

>>A"p <enter>

where A is a square-matrix, and p is a scalar.

Transcendental functions of individual elements of matrices can be calculated using
in-built MATLAB functions, such as sin, exp, sqrt, cos, tan, asin, acos, atan, sinh, cosh,
asinh, acosh, log, logl0, conj, abs, real, imag, sign, angle, gcd, Icm, etc. These commands,
used in the following manner

>>exp(A) <enter>

produce a matrix whose elements are the required transcendental function of the corre-
sponding elements of the matrix, A. Hence, these transcendental functions are called
array operations, which are performed on individual elements of a matrix, rather than
on the matrix as a whole. Refer to the MATLAB Reference Guide [2] for details on all
the in-built transcendental functions available in MATLAB, or issue the help command.
Other array operations are multiplication and division of the elements of one matrix by
the corresponding elements of another matrix (of the same size), and element-by-element
powers of a matrix. A period (.) preceding an operator (such as */ \ or *) denotes an
array operation. For example, the command

>>C = A.*B <enter>

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

EBSCOhost -

PERFORMING MATRIX OPERATIONS IN MATLAB 473

denotes that elements of the matrix, C, are products of the elements of the matrices, A
and B (both of the same size), and the command

>>C = A."2 <enter>

denotes that the elements of the matrix, C, are the squares of the elements of the matrix, A.

Some special matrix transcendental functions, such as expm, logm, and sgrtm are also
available only for square-matrices. These matrix commands have special mathematical
significance, such as the matrix exponential, expm, defined in Chapter 4.

Some useful elementary matrix operations are supported by MATLAB, such as poly
(the characteristic polynomial), det (determinant), rank (rank of a matrix), trace (matrix
trace), kron (Kronecker tensor product), inv (matrix inverse), eig (eigenvalues and eigen-
vectors), svd (singular-value decomposition), norm (1-norm, 2-norm, F-norm, co-norm),
rcond (condition number), conv (multiplication of two polynomials), residue (partial frac-
tion expansion), roots (polynomial roots), etc. For a complete list and details of all the
in-built matrix operations available in MATLAB, refer to the MATLAB Reference Guide
[2], or issue the help command.

The relational operations comparing two matrices are also supported by the following
MATLAB operators: < (less than), <= (less than or equal to), > (greater than), >= (greater
than or equal to), == (equal to), ~= (not equal to). Comparing two matrices (of the
same size) with the relational operators produces a matrix comprising 1 for each pair of
elements for which the relationship is true, and zero for each pair of elements for which
the relationship is false. For example, the command

>> [12; 0 5] ~= [0 2; 3 5] <enter>
results in the following answer:

ans

— el]

0
0

MATLAB provides special functions, such as find and rem, which are very useful in
relational operations. The function find finds the indices of the elements of a vector that
satisfy a particular relational condition. When used on a matrix, find indexes the elements
of the matrix by arranging all the rows in a long column vector, beginning with the first
element of the first row, and ending with the last element of the last row. For example,
if we wish to find elements of the matrix, A, defined in Eq. (A.1) that are greater than or
equal to zero, we can simply issue the following command:

>> i=find(A>= 0), A(i)’ <enter>

ans =
18 9 11 26 6 0 0 7 4

Note that the vector i contains the indices of the elements of A that are greater than or equal
to zero. Also note that we have printed-out the transpose of A(i) to save space. The func-
tion rem is another useful relational function. The command rem (A, p) produces a matrix

printed on 10/27/2025 6:13 AMvia UNI VERSI TY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of -use

474 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

formed by the remainders of the elements of a matrix, A, when divided by the scalar, p.
Suppose we wish to find the locations of the elements of matrix, A, defined in Eq. (A.1)
which are exactly divisible by 3, and mark these locations by a matrix of ones and zeros,
with 1 standing for each element of A which is divisible by 3, and 0 standing for those
elements that are not divisible by 3. This is simply achieved using the following command:

>> rem(A,3)==0 <enter>

which results in the following answer:

ans =
0 0 1
1 0 0
1 1 1
0o 1 0

Other useful relational functions are isnan (detect NaNs in a matrix), isinf (detect infinities
in a matrix), and finite (detect finite values in a matrix).

The relational operations in MATLAB are based on the logical operators, namely &
(and), | (or), ~(not). The logical operations denote true by 1 and false by 0. For example,
the logical statement

>> ~A <enter>

will produce a matrix which has 1 at all locations where the corresponding elements in
A are zeros, and 0 at all locations where A has non-zero elements. The logical functions
any and all come in handy in many logical operations. The function any(A) produces
1 for each column of the matrix A that has a non-zero element, and 0 for the columns
which have all zero elements. The function all(A) produces 1 for each column of the
matrix A that has all non-zero elements, and 0 for the columns which have at least one
zero element. With the matrix A of Eq. (A.1) the any and all commands produce the
following results:

>>any(A) <enter>

ans =
1 1 1

>>all(A) <enter>

ans =
1.0 0

A logical function called exist can be used to find out whether a variable with a particular
name exists in the work-space. For greater information on relational and logical operators,
refer to the MATLAB Reference Guide [2].

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

PROGRAMMING IN MATLAB: CONTROL FLOW AND M-FILES 475

A.3 Programming in MATLAB: Control Flow and
M-Files

Instead of issuing individual MATLLAB commands at the command-line, you can group
a set of commands to be executed in a MATLAB program, called an M-file. The M-files
have extension. m, and are of two types: script files, and function files. A script file simply
executes all the commands listed in the file, and can be invoked by typing the name of the
file and pressing <enter>. For example, a script file called use.m is invoked by typing
use <enter> at the command-line prompt. After executing a script file, all the variables
computed in the file are automatically stored in the work-space. The function files differ
from script files in that all the variables computed inside the file are not communicated
to the work-space, and only a few specific variables, called input and output arguments,
are communicated between the function file and the work-space. Thus, a function file acts
like a subroutine of a main FORTRAN, PASCAL, or BASIC program. A function file
can either be called from the work-space, or from another M-file, and is therefore useful
for extending the function library of the MATLLAB. The function file must contain the
word function at the beginning of the first line, followed by a list of output arguments
separated by commas within square brackets, followed by the sign =, followed by the
name of the function file, and finally followed by a list of input arguments separated by
commas within parentheses. For example, the first line of a function file called fred.m
looks like the following:

function [X, Y] = fred(A, B, C, D)

where A, B, C, D are input arguments to be specified by the calling program (either
work-space, or another M-file), and X, Y are the output arguments to be returned to the
calling program. The existence of this function file anywhere in the MATLAB directory
defines a new MATLAB function called fred. All the existing MATLAB functions are,
thus, in the form of function files.

The programming structure in MATLAB need not be limited to flow of information in
a sequence of line commands. The flow of information within an M-file can be controlled
using the for and while loops, and the logical if statements, as in any other programming
language (such as DO and FOR loops, and IF statements in FORTRAN). The for loop in
MATLAB allows a group of statements to be repeated a specified number of times. The
group of statements to be repeated must end with an end statement. One can have nested
Sfor loops within for loops, each ending with an end statement. The general structure of
a for loop is the following:

for i = N1:dN:N2
statements to be repeated
end

where N1, dN, and N2 denote the initial value, increment, and final value of the indexing
integer, i. Note that N2 could be less than N1, in which case d N must be negative.

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

476 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

The while loop allows a group of statements to be repeated an indefinite number of
times, as long as a logical condition is satisfied. The general form of a while loop is the
following:

while logical expression
statements to be repeated
end

The statements in a while loop are executed as long as the logical expression is true
(i.e. as long as the all the elements of the expression matrix are non-zero). Usually, the
expression is a scalar. An example of a while loop is the following:

A=[1 0 -1; 0 -1 1; 1 -2 1];

while norm(A, inf)<5
A=A+0.1;

end

where norm (A, inf) denotes the infinity norm of the matrix, A.

The if and else statements allow a group of statements to be executed, if a specified
logical expression is true, and a second group of statements to be executed, if the same
logical expression is false. It is also possible to execute a third set of statements, if
the specified logical expression in false, and another logical expression is true, using
the statement elseif. Each if, eise, elseif block of statements must be followed by the
end statement. For example, the following program illustrates how a computation can be
carried out in three cases, depending upon the value of a scalar, p:

if p<1.0
A=B*C;
elseif p==1.0
A=(B.*B)*C;
else
A=zeros(size(B*C));
end

Using the if statement, it is possible to come out of a for or while loop with the break
statement. For example, if you do not wish to repeat a while loop more than 100 times,
you can use the if and break combination as follows:

n=0;

while expression

n=n+1

if n>100, break, end

statements to be repeated
end

You can create your own online help for the M-files you have programmed by adding
comment statements immediately after the first line of the file. A comment statement
begins with the symbol % and are not executed by MATLAB. Some programs may

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

THE CONTROL SYSTEM TOOLBOX 477

require strings of texts for their execution. A string of text is specified by entering text
within single quotes, such as:

>>g = ‘goodbye’ <enter>
which results in

S:
goodbye

A mathematical expression can be included as a text string, and you can use the function
eval to evaluate the value of the expression.

There are several advanced ways of providing input and output data to and from
MATLAB, such as using a shell escape to an externally running program, importing and
exporting data using flat files, MEX-files, and MAT-files, or with the MATLAB functions
fopen, fread, and fwrite for disk data files. For further information on data transfer to and
from MATLAB, refer to the MATLAB User’s Guide [1].

Programming in MATLAB is made easy with the availability of the command-line
editor, which displays error messages if a command is incorrectly used, or with the help
of debugging commands, such as dbstop, dbclear, dbcont, dbstack, dbstatus, etc. A simple
way of checking whether your M-file is doing what it is supposed to do, is displaying
the results of selected intermediate computations by removing semi-colons at the end of
selected statements.

Finally, you can post-process your computations by plotting important variables using
MATLAB’s extensive graphical capabilities. The most commonly used MATLAB graph-
ical commands are plot (X, Y) (for generating a plot of the elements of vector, Y, against
the vector, X). Most of the graphs contained in this book have been generated using the
plot command. You should carefully study the various options available in executing the
plot command [1], and also other graphical commands, such as semilogx (a plot with a
log scale on the x-axis), semilogy (a plot with a log scale on the y-axis), loglog (a plot
with log scales on both x- and y-axes), subplot (for displaying more than one plots at a
time), grid (for generating a grid for a plot), etc. Other MATLAB 2-D graphical functions
include stairs (staircase plot), bar (bar-chart), hist (histogram), feather (feather plot for
angles and magnitudes of complex numbers), polar (plot in polar coordinates), guiver
(plots of vector magnitudes and directions), rose (angle histogram), fill (solid polygonal
plot), and fplot (plot of an evaluated mathematical function). There are also a range of
3D plotting functions available in MATLAB. Refer to the User’s Guide [1] for details on
graphical functions.

A.4 The Control System Toolbox

The Control System Toolbox (CST) for use with MATLAB provides additional function
M-files (apart from the basic MATLAB functions) that are especially useful in the analysis
and design of control systems. Most of the function files from CST have been extensively
used throughout this book, and you have been provided information on how to invoke

EBSCChost - printed on 10/27/2025 6:13 AMvia UNIVERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

478 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

the associated commands in the main text. For additional information about the CST
functions, such as bode, dbode, are, c2d, c2dm, damp, ddamp, nyquist, dnyquist, Isim,
disim, tf, ss, estim, destim, lqr, digr, lqe, dige, sigma, dsigma, place, acker, ngrid, nichols,
reg, dreg, initial, dinitial, step, dstep, impulse, dimpulse, series, parallel, feedback, margin,
rlocus, etc., you may refer to the User’s Guide for Control System Toolbox {3}, or issue
the help command. Two valuable user-friendly graphical tools are also available with
CST: the LTI Viewer, which lets you view all necessary information required in analyzing
a linear, time-invariant system at the click of the mouse button, and the SISO design
tool, which leads you step-by-step in the graphical window world of designing single-
input, single-output, LTI systems. To access these tools, go to the MATLAB launch
pad, click on the + sign next to the Control System Toolbox, and select any of the
two tools that appear on the selection tree. As you become sufficiently proficient with
MATLAB programming, you may find it relatively easier to write your own function files
for carrying out many of the control analysis and design tasks detailed in CST, using the
basic MATLAB functions and the theoretical background in control systems provided in
this book. Some examples of the new function M-files have been listed elsewhere in this
book. However, for a beginner in controls, the CST function files are valuable tools for
learning the tricks of the trade. Apart from the CST, there are several other toolboxes
available for advanced control applications, such as the Signal Processing Toolbox, System
Identification Toolbox, Optimization Toolbox, Robust Control Toolbox, Nonlinear Control
Design Toolbox, Neural Network Toolbox, and p-Analysis and Synthesis Toolbox. As your
control applications become advanced, you may wish to add some of these advanced
toolboxes to your MATLAB directory. Information on how to order these toolboxes can
be obtained from the MathWorks, Inc., 24 Prime Park Way, Natick, MA.

A.5 SIMULINK

SIMULINK is a Graphical User’s Interface (GUI) software which works directly with the
block-diagram of a control system (rather than differential equations, or transfer functions)
to produce a simulation of the system’s response to arbitrary inputs and initial conditions.
The basic entity in SIMULINK is a block, which can be selected from a library of
commonly used blocks. Alternatively, a user can devise special blocks out of the common
blocks, M-files, MEX files, C, or Java-codes through the S-function facility. The procedure
for carrying out a system’s simulation through SIMULINK is the following:

1. Double click on the SIMULINK icon on the MATLAB toolbar, or issue the command
simulink < enter > at the MATLAB prompt (>>). The SIMULINK library browser
window will open.

2. Click on the create a new model icon on the SIMULINK roolbar. A window for the
new model will open.

3. Open the subsystem library in the general SIMULINK library browser by double-
clicking on the appropriate icon. The subsystems are: continuous, discrete, functions
& tables, math, nonlinear, signals & systems, sinks, and sources.

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

EBSCOhost -

SIMULINK 479

4. Select the required blocks from the subsystems libraries, and drag them individually
to the open new model window.

5. Once you have dragged the required blocks to the new model window, you can join
the in-ports and out-ports of the adjacent blocks to create a block-diagram as desired.
You can double-click on each block in your model to open a dialog box, in which the
block’s parameters can be set.

6. Once the block-diagram is complete, you can save it using the save button on the new
model’s toolbar.

7. Now you are ready to begin the simulation of your control system. Just go to the
toolbar of the model you have saved and click on the play button. If you have created
your model correctly, the simulation will start and you can view the results using
any of the sink blocks in your model. However, one seldom succeeds at first, and
SIMULINK prompts you through a diagnostics dialog box to tell you what went
wrong with the simulation, and also what you should modify in your model for a
successful simulation.

8. You can refine your simulation by adjusting the simulation parameters that drop down
when you click on the simulation button on the model’s toolbar.

Following the above steps, any practical control system can be simulated accurately
using SIMULINK. Let us briefly see the contents of each SIMULINK subsystem block
library.

Continuous: transfer function, state-space, integrator, derivative, transport delay, vari-
able transport-delay, memory, zero-pole. (These block help you construct a continuous-
time (analog) system model.)

Discrete: discrete transfer function, discrete state-space, discrete zero-pole, discrete filter,
discrete-time integrator, first-order hold, zero-order hold, unit delay. (These block help
you construct a discrete-time (digital) system model.)

Functions & Tables: this library contains specialized functions and tables blocks useful
for creating complicated systems. It includes all MATLAB intrinsic functions, as well as
special user created functions through the S-function block.

Math: all the mathematical connection blocks (such as sum junction, gain, matrix gain,
product, dot product, abs, floor, trigonometric function, etc.), and relational and logical
operator blocks (such as and, combinatorial logic, etc.) are found here. These blocks are
indispensable in constructing any control system.

Nonlinear: contains a number of nonlinear system blocks that are very useful in modeling
a variety of physical phenomena. Some examples are backlash, coulomb & viscous friction,
dead zone, saturation, rate limiter, relay, switch, etc.

Signals & Systems: this library contains many specialized blocks used for representing
subsystems and operating on signals passing through a system. Some commonly useful

printed on 10/27/2025 6:13 AMvia UNI VERSI TY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of -use

480 INTRODUCTION TO MATLAB, SIMULINK AND THE CONTROL SYSTEMS TOOLBOX

blocks are subsystem (which allows you to group a number of blocks into a subsystem),
mux, demux, inl, and outl.

Sinks: contains a number of possible ways of output of data from a model, such as scope,
xy graph, to workspace, simout, display, and stop simulation. For example, a scope can
be used to directly view a simulation variable in a window of the model, and to also store
the data in a file.

Sources: provides a variety of input sources for the model, such as step, ramp, sine
wave, pulse generator, random number, repeating sequence, band-limited white noise,
chirp signal, signal generator, etc.

The SIMULINK provides several simulation parameters that can be adjusted to achieve
a desired accuracy in a simulation. A user can select from a number of time-integration
schemes, such as Runge—Kutta, Adams, Euler, predictor-corrector, as well as refine the
tolerances and time step sizes used for performing the simulation. Useful diagnostics are
generated to let a user improve her simulation.

The most useful feature of SIMULINK is that you can use variables specified in the
MATLAB work-space as block parameters, and in this manner work seamlessly with all
the intrinsic and toolbox functions of MATLAB. For more information on SIMULINK,
refer to its user’s guide [4], or work interactively with the SIMULINK blocks and models
until you get a hang of it. Once understood, SIMULINK modeling can become a powerful
tool in the hands of a control systems designer.

References

1. MATLAB 6.0 User’s Guide. The Math Works Inc., Natick, MA, USA, 2000.

. MATLAB 6.0 Reference Guide. The Math Works Inc., Natick, MA, USA, 2000.

3. Control System Toolbox 5.0 for Use with MATLAB-User’s Guide. The Math Works Inc., Natick,
MA, USA, 2000.

4. SIMULINK 4.0 User’s Guide. The Math Works Inc., Natick, MA, USA, 2000.

N

EBSCChost - printed on 10/27/2025 6:13 AMvia UNI VERSITY OF SALFORD. All use subject to https://ww.ebsco.conlterns-of-use

