
432 DIGITAL CONTROL SYSTEMS

Robustness of digital, optimally compensated (DLQG) systems can be ensured in a
manner similar to the analog multivariable systems presented in Section 7.6 using loop-
transfer recovery (LTR), with the difference that the singular values are obtained for digital
systems rather than analog systems. MATLAB's Robust Control Toolbox provides the
command dsigma for computing singular values of a digital system. The command dsigma
is used in precisely the same manner as the command sigma for analog systems, with
the input arguments being the digital state-space coefficient matrices (or the numerator
and denominator polynomials of single-input, single-output pulse transfer function). In a
manner similar to the digital magnitude plot obtained by dbode, the command dsigma
computes the singular values only upto the Nyquist frequency, n/T. As noted earlier,
a digital system is unable to respond to frequencies above the Nyquist frequency, and
thus has an inherent robustness with respect to high-frequency noise. As an exercise, you
should carry out loop-transfer recovery for the plant of Example 2.22 using the techniques
of Section 7.6 and the command dsigma.

Whereas digital control systems are quite robust with respect to high-frequency noise,
their implementation using integer, or binary (rather than real) arithmetic results in some
robustness problems that are not encountered in analog systems. The effects of round-
off, quantization, and overflow when handling integer arithmetic on a digital computer
appear as additional noise in digital systems, and robustness of a digital control system to
such noise-referred to as finite-word length effects becomes important. A discussion of
these topics is beyond the scope of this book, and you may refer to a textbook on digital
control [2, 4] for this purpose.

Exercises

8.1. Find the z-transform, F(z), of each of the following digital functions:

(a) f ( k T ) = e-akTus(kT)

(b) f ( k T ) = (kT)2Q-akTus(kT)

(c)

8.2. Find the inverse z-transform, f ( k T ) , of each of the following functions:

(a) F(z) = z/(z2 + 0.99)

(b) F(z) = z(z + D/(z3 - 2z2 - 5z - 1)

(c) F(z) = z(z + l.l)(z - 0.9)/(z4 + 5z3 - 2.2z2 - 3)

(d) F(z) = (z + l)/[(z2 - 1 . 14z + 0.65)(z - 0.9)]

8.3. Find the pulse transfer function, G(z), for each of the following sampled-data analog
systems with transfer function, G(s), and sampling interval, T = 0.2 second:

(a)

(b) G(s) = s/(s2-2s+6)
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EXERCISES 433

(c) G(s) = 100/03 - 4s + 25)

(d) G(s) = (s + 1)0 - 2)/[(s + 10) (.v3 + 5.v2 + 12.v + 55)]

8.4. Find the pulse transfer function of the closed-loop system consisting of an A/D converter
with z.o.h and an analog plant of transfer function, GO), in the configuration shown in
Figure 8.4, for each GO) given in Exercise 8.3.

8.5. Plot the digital Bode diagrams for each of the sampled-data analog systems in Exercise 8.3,
and analyze their stability. What is the range of the sampling interval, 7\ for which each
of the systems are stable?

8.6. Plot the digital Bode diagrams for each of the closed-loop digital systems in Exercise 8.4,
and analyze their stability. What is the range of the sampling interval, T, for which each
of the systems are stable?

8.7. Compute and plot the digital step responses of the sampled-data analog systems in
Exercise 8.3.

8.8. Compute and plot the digital step responses of the closed-loop digital systems in Exer-

8.9. Find the steady-state value of the output of each of the digital systems in Exercises 8.3
and 8.4 if the input is a unit ramp function, tus(t}.

8.10. Find the steady-state value of the output of each of the digital systems in Exercises 8.3
and 8.4 if the input is a unit parabolic function, t2us(t).

8.11. A robotic welding machine has the transfer function, GO) = 10/03 + 9s2 + 1.1 000). A
computer based closed-loop digital controller is to be designed for controlling the robot
with the configuration shown in Figure 8.8. Let the computer act as an ideal sampler and
z.o.h with a sampling interval of T = 0.1 second, and the digital controller be described
by a constant pulse transfer function, H(z) — K. Find the range of K for which the
closed-loop system is stable.

8.12. The pitch dynamics of a satellite launch vehicle is described by the analog transfer func-
tion, G(s) = l/(s2 — 0.03). A digital control system is to be designed for controlling this
vehicle with a z.o.h, a sampling interval T — 0.02 second, and a constant controller pulse
transfer function, H ( z ) = K. Find the range of K for which the closed-loop system is
stable. What is the value of K for which the closed-loop step response settles in less than
five seconds with a maximum overshoot less than 10 percent?

8.13. For the hard-disk read/write head of Example 2.23 with the analog transfer function given
by Eq. (2.165), it is desired to design a computer based closed-loop digital system shown
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434 DIGITAL CONTROL SYSTEMS

in Figure 8.8. The computer is modeled as an A/D converter with z.o.h and a sampling
interval of T = 0.05 second, and the digital controller is a lag-compensator given by the
pulse transfer function, H(z) = K(z — Z0)/(z — zp), where K is a constant, z0 = (2/T -
au>0)/(2/T +aa>0), and zp = (2/T — a)0)/(2/T +a)0), with a > 1. Find the values of
K, a, and co0 such that the closed-loop system has a maximum overshoot less than 20
percent and a steady-state error less than 1 percent if the desired output is a unit step
function.

.14. For the roll dynamics of a fighter aircraft described in Example 2.24 with the analog
transfer function given by Eq. (2.181), it is desired to design a computer based closed-
loop digital system shown in Figure 8.8. The computer is modeled as an A/D converter
with z.o.h and a sampling interval of T = 0.2 second, and the digital controller is a lead-
compensator given by the pulse transfer function, H(z) = K(z — z0)/(z — zp), where K
is a constant, z0 = (2/T - aco0)/(2/T + aco0), and zp = (2/T - a)0)/(2/T + o>0), with
a < 1. Find the values of K, a, and a>0 such that the closed-loop system has a maximum
overshoot less than 5 percent with a settling time less than two seconds and a zero
steady-state error, if the desired output is a unit step function.

.15. Derive a digital state-space representation for each of the sampled-data analog systems in
Exercise 8.3.

8.16. Derive a digital state-space representation for each of the closed-loop digital systems in
Exercise 8.4.

8.17. Find a state-space representation for each of the digital systems described by the following
difference equations, with y(k) as the output and u(k) as the input at the fcth sampling
instant:

(a) y(k + 3) = 2y(k + 2) - l.3y(k + 1) - 0.8y(*) + 0.2u(k)

(b) y(k + 2) = 4y(k + 1) - 3y(k) + 2u(k + 1) - u(k)

(c) y(k + 4) = 2ly(k + 3) - \5y(k + 2)- y(k) + 3u(k + 3) - u(k + 1) + 2.2u(k)

8.18. Find the controller companion form, the observer companion form, and the Jordan canon-
ical form state-space representations of the digital systems in Exercise 8.17.

8.19. A multivariable digital system is described by the following difference equations:

yi(k + 2) + y,(* + 1) - y2(k) = «,(*) + u2(k)

- y\(k) = m(k)

where u\(k) and u2(k) are the inputs and y\(k) and y2(k) are the outputs at the fcth
sampling instant. Derive a state-space representation of the system.
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EXERCISES 435

8.20. For the distillation column whose analog state-space representation is given in Exer-
cises 5.4 and 5.15, derive a digital state-space representation with z.o.h and a sampling
interval of T = 0.2 second.

8.21. For the aircraft lateral dynamics described by Eq. (4.97) in Exercise 4.3, derive a digital
state-space representation with z.o.h and a sampling interval of T = 0.2 second.

8.22. Repeat Exercises 8.20 and 8.21 with a first-order hold. Compare the respective z-plane
pole locations with those in Exercises 8.20 and 8.21.

8.23. Repeat Exercises 8.20 and 8.21 with a bilinear transformation. Compare the respective
z-plane pole locations with those in Exercises 8.20 and 8.21.

8.24. For the distillation column with digital state-space representation derived in Exercise 8.20,
design a full-state feedback regulator to place closed-loop poles at zi.2 = 0.9± O.h',
Z3 = 0.37, and Z4 = 0.015. Find the initial response of the regulated system to the initial
condition x(0) = [1; 0; 0; 0]r.

8.25. For the aircraft lateral dynamics with digital state-space representation derived in Exercise
8.21, design a full-state feedback regulator to place closed-loop poles at z\.2 — 0.9 ± O.I / ,
z3 = 0.92, and 14 = 0.22. Find the initial response of the regulated system to the initial
condition x(0) = [0.5; 0; 0; Of.

8.26. Using the MATLAB (CST) command place, design a full-order, two-output, current
observer for the digitized distillation column of Exercise 8.20 such that the observer poles
are placed at zi,2 = 0.8 ± 0.2/, zj = 0.3, and 24 = 0.015. Combine the observer with the
regulator designed in Exercise 8.24 to obtain a compensator. Find the initial response of
the compensator to the initial condition x(0) = [1; 0; 0; 0]r. Compare the required control
inputs of the compensated system for the initial response to those required by the regulator
in Exercise 8.24.

8.27. Using the MATLAB (CST) command place, design a full-order, two-output, current
observer for the digitized aircraft lateral dynamics of Exercise 8.21 such that the observer
poles are placed at z\,2 = 0.8 ± 0.2/, z3 = 0.8, and z4 = 0.1. Combine the observer with
the regulator designed in Exercise 8.25 to obtain a compensator. Find the initial response
of the compensator to the initial condition x(0) = [0.5; 0; 0; 0]r. Compare the required
inputs of the compensated system for the initial response to those required by the regulator
in Exercise 8.25.

8.28. Repeat the compensator designs of Exercises 8.26 and 8.27 with all closed-loop poles at
z = 0. Plot the deadbeat initial response of the designed closed-loop systems.

8.29. For the compensators designed in Exercise 8.28, simulate the response to measurement
noise appearing simultaneously in all the output channels, using SIMULINK. (Use a
band-limited white noise of power 10~6.)
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