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EXERCISES 463

Shue, Swan and Rokhsaz [22] introduced the above approach of selecting a positive
definite Lyapunov function, and applied it to the wing-rock suppression in a second order
system consisting of pure rolling, while Tewari [23] extended the approach to the fifth
order system considered in Example 9.6, with additional dynamics of an actuator and
the yawing motion — a more realistic model than that of Shue, Swan and Rokhsaz [22].
Assuming a structure for the Lyapunov function that is same as that of the cost func-
tion in the performance index [22,23] makes the task of selecting the Lyapunov function
easier. The need for nonlinear optimal feedback controller is highlighted in both refer-
ences [22,23], when it is found that wing-rock suppression by linear feedback control is
restricted to only small initial conditions.

Robustness properties of the nonlinear controller with respect to uncertain parameters
is an important issue when it is recognized that the nonlinear wing rock aerodynamic
model may have significant errors. Such errors generally tend to get amplified by a feed-
back controller, resulting in a lack of performance and/or stability when implemented in
actual conditions. While Tewari [23] ensured robustness with respect to parametric uncer-
tainty by iteratively selecting the controller cost parameters, such that a small variation
in the values of aerodynamic and actuator parameters does not lead to a large deviation
from nominal performance, more formal methods of guaranteeing robustness in nonlinear
optimal control are also available, such as the nonlinear Hy-optimal control derivation
of Wise and Sedwick [24] and van der Schaft [25].

Exercises

9.1. Write a MATLAB M-file for calculating the Hy-norm of a transfer matrix, G(s), using
the MATLAB command sigma. Use the M-file to compute the Hy,-norms of the following
transfer matrices:

(@) GGs)=[(s+1)/(s* +25+3); 1/(s*+ D]

_ 1/(s +2) 0
(b) Gls) = [—1/@2 +3s—1) (s+4)/(s+ 7)}
10Gs + 1)/(s + 10) 0 0
(c) G(s) = 0 (10s + 1)/[s(s + D] 0
0 0 s/(s+ 1)

9.2. Write a MATLAB M-file for estimating the structured singular value of a transfer matrix,
G(s), using the upper bound of Eq. (9.23), when the uncertainty matrix, A(s), has a
block-diagonal structure with distinct blocks {4]. Use the M-file to calculate u(G(iw)) for
the following constant transfer matrix:

4-2 —(1+i/72  —10
Gliw) = | —24 + 6i 3i 60 — 80i
~6/5 —(14+i)/5 201+i)

for each of the following block-diagonal structures for a constant uncertainty matrix, A (s):
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464 ADVANCED TOPICS IN MODERN CONTROL
A, O O
(@) Ap(s)=]0 A, O
[0 0 A
(A. 0 0 ]
) Aa(s)=(0 0 A,
(0 0 0 |
A, 0 O
(€) Aas) =] A2 0 O
[0 0 A;]
Y )
(d) Aas)=| A2 A3 O
0 0 A

9.3.

9.4.

9.5.

9.6.

9.7.

where A, Aj, Aj, A4 are scalar constants. Compare your results with those given in
Doyle [4].

Using the M-file developed in Exercise 9.2, calculate and plot the structured singular value,
u(Pr(iw)), as a function of frequency, w, for a closed-loop system with the following
values of the nominal plant transfer matrix, G,(s), compensator transfer matrix, H(s), and
the additive uncertainty matrix, A, (s):

9/(s+1) —10/(s+1)
-8/(s+2) 9/(s+2)

AA(S) = [(?] 22]

where A, A, are scalar constants. What is the maximum value of yu(Py;(iw)) and what is
the value of frequency at which it occurs?

]: H(s):l/(0.0159s)[9(s+1) 10(s+2)}

Go(s) = l: 8(s+1) 9s+2)

For the rotating spacecraft of Example 6.2, compute a pre-shaped input sequence assuming
the only input to be the hub torque, u; (), (i.e. u2(t) = u3(t) = 0), and retaining only the
first two flexible modes in Eq. (9.40), with t; = 0.1 second. Plot the hub-rotation angular
displacement and velocity due to the pre-shaped input.

Repeat Exercise 9.4 with ¢, = | second.
Repeat Exercises 9.4 and 9.5 with the first six flexible modes retained in the input sequence.

Devise a nonlinear optimal control-law for stabilizing the inverted pendulum on a moving
cart with the nonlinear plant’s state-equations given by Eqgs. (3.17) and (3.18), when the
angular motion of the pendulum is large. Calculate and plot the closed-loop initial response
if the initial condition is x(0) = 0, xV(0) = 0, 8(0) = 1.0 rad, 8" (0) = 0.1 rad/s.
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