permitted Wiley May no John rved. 2002.

- 4.9. Solve for the motion of the double-pendulum (Example 4.12) if the initial condition is zero, $\mathbf{x}(0) = \mathbf{0}$, and the input torque is a unit step function, $u(t) = u_s(t)$.
- 4.10. For the wing-rock dynamics of Example 4.13, solve for the bank angle, $x_1(t)$, and rollrate, $x_2(t)$, if the initial condition is zero, $\mathbf{x}(0) = \mathbf{0}$, and the desired aileron input is a unit step function, $u(t) = u_s(t)$.

References

- 1. Golub, G.H. and van Loan, C.F. Matrix Computation. Johns Hopkins University Press, 1983.
- 2. Moler, C.B. and van Loan, C.F. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review, 20, 801-836, 1979.
- 3. Control System Toolbox-5.0 for Use with MATLAB®-User's Guide, The Math Works Inc., Natick, MA, USA, 2000.
- 4. Henrici P., Discrete Variable Methods in Ordinary Differential Equations. John Wiley & Sons, New York, 1962.
- 5. Ralston, A. and Rabinowitz, P. A First Course in Numerical Analysis. McGraw-Hill, New York, 1988.
- 6. Tewari, A. Nonlinear optimal control of wing rock including vawing motion. Paper No. AIAA-2000-4251, Proceedings of AIAA Guidance, Navigation, and Controls Conference, Denver, CO. August 14-17, 2000.
- 7. SIMULINK-4.0 User's Guide. The Math Works Inc., Natick, MA, USA, 2000.